mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-25 02:48:44 +01:00
ec893798b7
* tests : verify that RoPE is "additive" * llama : replace ggml_diag_mask_inf with ggml_add (custom -inf mask) * ggml : ggml_rope now takes a vector with positions instead of n_past * metal : add rope_f16 kernel + optimize cpy kernels * llama : unified KV cache + batch inference API * llama : add new llama_decode() API that works with llama_batch * llama : add cell_max heuristic for more efficient kv_cache * llama : extend llama_kv_cache API * llama : more robust cell_max heuristic + wip shift * metal : disable concurrency optimization * llama : add llama_kv_cache_shift_seq + no more context swaps * llama : apply K-cache roping for Falcon and Baichuan * speculative : fix KV cache management * parallel : example for serving multiple users in parallel * parallel : disable hot-plug to avoid cache fragmentation * fixes : speculative KV cache + llama worst-case graph * llama : extend batch API to select which logits to output * llama : fix worst case graph build * ggml-cuda : update rope implementation for parallel decoding (#3254) * ggml-cuda : update rope implementation for parallel decoding * better solution for p0 computation * fix rope * simpler rope implementation --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * make : add parallel to build + fix static functions in llama.cpp * simple : fix token counting * parallel : various improvements * llama : fix cell_max logic + rename functions * parallel : try smaller batches when the KV cache is fragmented * parallel : fix sequence termination criteria * llama : silence errors KV cache errors * parallel : remove new line from prompt * parallel : process system prompt once + configurable paramters + llama API * parallel : remove question with short answers * parallel : count cache misses * parallel : print misses on each request * parallel : minor * llama : fix n_kv to never become 0 * parallel : rename hot-plug to continuous-batching * llama : improve llama_batch API + simplify parallel example * simple : add parallel decoding support * simple : improve comments + free batch * ggml-cuda : add rope f16, restore performance with parallel decoding (#3272) * ggml-cuda : add rope f16, restore performance * offload KQ_mask with all models * fix rope shift --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : disable MPI for now ggml-ci * train : make KQ_pos memory buffer permanent via dummy scale op * ggml : revert change to ggml_cpy, add ggml_cont_Nd instead (#3275) ggml-ci * parallel : fix bug (extra BOS) + smaller token_prev array * parallel : fix cases where the input prompts can overflow the batch * parallel : add disabled experimental batch chunking in powers of two * llama : llama.h formatting + comments * simple : add README.md * llama : fix kv cache heuristic when context is less than 32 * parallel : fix crash when `-n -1` * llama : simplify returns if/else branches * metal : use mm kernels for batch size > 2 * examples : utilize new llama_get_logits_ith() * examples : add example for batched decoding * examples : do not eval prompt 2 times (close #3348) * server : clear the KV cache beyond n_past before llama_decode * server : avoid context swaps by shifting the KV cache --------- Co-authored-by: slaren <slarengh@gmail.com>
22 lines
903 B
Markdown
22 lines
903 B
Markdown
# llama.cpp/example/simple
|
|
|
|
The purpose of this example is to demonstrate a minimal usage of llama.cpp for generating text with a given prompt.
|
|
|
|
```bash
|
|
./simple ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is"
|
|
|
|
...
|
|
|
|
main: n_len = 32, n_ctx = 2048, n_parallel = 1, n_kv_req = 32
|
|
|
|
Hello my name is Shawn and I'm a 20 year old male from the United States. I'm a 20 year old
|
|
|
|
main: decoded 27 tokens in 2.31 s, speed: 11.68 t/s
|
|
|
|
llama_print_timings: load time = 579.15 ms
|
|
llama_print_timings: sample time = 0.72 ms / 28 runs ( 0.03 ms per token, 38888.89 tokens per second)
|
|
llama_print_timings: prompt eval time = 655.63 ms / 10 tokens ( 65.56 ms per token, 15.25 tokens per second)
|
|
llama_print_timings: eval time = 2180.97 ms / 27 runs ( 80.78 ms per token, 12.38 tokens per second)
|
|
llama_print_timings: total time = 2891.13 ms
|
|
```
|