mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-04 01:57:53 +01:00
b804b1ef77
* gguf-debug: Example how to use ggml callback for debugging * gguf-debug: no mutex, verify type, fix stride. * llama: cv eval: move cb eval field in common gpt_params * ggml_debug: use common gpt_params to pass cb eval. Fix get tensor SIGV random. * ggml_debug: ci: add tests * ggml_debug: EOL in CMakeLists.txt * ggml_debug: Remove unused param n_batch, no batching here * ggml_debug: fix trailing spaces * ggml_debug: fix trailing spaces * common: fix cb_eval and user data not initialized * ci: build revert label * ggml_debug: add main test label * doc: add a model: add a link to ggml-debug * ggml-debug: add to make toolchain * ggml-debug: tests add the main label * ggml-debug: ci add test curl label * common: allow the warmup to be disabled in llama_init_from_gpt_params * ci: add curl test * ggml-debug: better tensor type support * gitignore : ggml-debug * ggml-debug: printing also the sum of each tensor * ggml-debug: remove block size * eval-callback: renamed from ggml-debug * eval-callback: fix make toolchain --------- Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
96 lines
4.6 KiB
Markdown
96 lines
4.6 KiB
Markdown
# llama.cpp/examples/eval-callback
|
|
|
|
A simple example which demonstrates how to use callback during the inference.
|
|
It simply prints to the console all operations and tensor data.
|
|
|
|
Usage:
|
|
|
|
```shell
|
|
eval-callback \
|
|
--hf-repo ggml-org/models \
|
|
--hf-file phi-2/ggml-model-q4_0.gguf \
|
|
--model phi-2-q4_0.gguf \
|
|
--prompt hello \
|
|
--seed 42 \
|
|
-ngl 33
|
|
```
|
|
|
|
Will print:
|
|
|
|
```shell
|
|
llm_load_tensors: offloaded 33/33 layers to GPU
|
|
...
|
|
llama_new_context_with_model: n_ctx = 512
|
|
...
|
|
llama_new_context_with_model: CUDA0 compute buffer size = 105.00 MiB
|
|
llama_new_context_with_model: CUDA_Host compute buffer size = 6.01 MiB
|
|
llama_new_context_with_model: graph nodes = 1225
|
|
llama_new_context_with_model: graph splits = 2
|
|
ggml_debug: inp_embd = (f32) GET_ROWS(token_embd.weight{2560, 51200, 1, 1}, inp_tokens{1, 1, 1, 1}}) = {2560, 1, 1, 1}
|
|
[
|
|
[
|
|
[ -0.0181, 0.0272, 0.0272, ...],
|
|
],
|
|
]
|
|
ggml_debug: norm-0 = (f32) NORM(CUDA0#inp_embd#0{2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
|
|
[
|
|
[
|
|
[ -0.6989, 1.0636, 1.0636, ...],
|
|
],
|
|
]
|
|
ggml_debug: norm_w-0 = (f32) MUL(norm-0{2560, 1, 1, 1}, blk.0.attn_norm.weight{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
|
|
[
|
|
[
|
|
[ -0.1800, 0.2817, 0.2632, ...],
|
|
],
|
|
]
|
|
ggml_debug: attn_norm-0 = (f32) ADD(norm_w-0{2560, 1, 1, 1}, blk.0.attn_norm.bias{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
|
|
[
|
|
[
|
|
[ -0.1863, 0.2970, 0.2604, ...],
|
|
],
|
|
]
|
|
ggml_debug: wqkv-0 = (f32) MUL_MAT(blk.0.attn_qkv.weight{2560, 7680, 1, 1}, attn_norm-0{2560, 1, 1, 1}}) = {7680, 1, 1, 1}
|
|
[
|
|
[
|
|
[ -1.1238, 1.2876, -1.8086, ...],
|
|
],
|
|
]
|
|
ggml_debug: bqkv-0 = (f32) ADD(wqkv-0{7680, 1, 1, 1}, blk.0.attn_qkv.bias{7680, 1, 1, 1}}) = {7680, 1, 1, 1}
|
|
[
|
|
[
|
|
[ -1.1135, 1.4604, -1.9226, ...],
|
|
],
|
|
]
|
|
ggml_debug: bqkv-0 (view) = (f32) VIEW(bqkv-0{7680, 1, 1, 1}, }) = {2560, 1, 1, 1}
|
|
[
|
|
[
|
|
[ -1.1135, 1.4604, -1.9226, ...],
|
|
],
|
|
]
|
|
ggml_debug: Qcur-0 = (f32) CONT(bqkv-0 (view){2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
|
|
[
|
|
[
|
|
[ -1.1135, 1.4604, -1.9226, ...],
|
|
],
|
|
]
|
|
ggml_debug: Qcur-0 (reshaped) = (f32) RESHAPE(Qcur-0{2560, 1, 1, 1}, }) = {80, 32, 1, 1}
|
|
[
|
|
[
|
|
[ -1.1135, 1.4604, -1.9226, ...],
|
|
[ -0.3608, 0.5076, -1.8866, ...],
|
|
[ 1.7643, 0.0273, -2.1065, ...],
|
|
...
|
|
],
|
|
]
|
|
ggml_debug: Qcur-0 = (f32) ROPE(Qcur-0 (reshaped){80, 32, 1, 1}, CUDA0#inp_pos#0{1, 1, 1, 1}}) = {80, 32, 1, 1}
|
|
[
|
|
[
|
|
[ -1.1135, 1.4604, -1.9226, ...],
|
|
[ -0.3608, 0.5076, -1.8866, ...],
|
|
[ 1.7643, 0.0273, -2.1065, ...],
|
|
...
|
|
],
|
|
]
|
|
```
|