1
0
mirror of https://github.com/ggerganov/llama.cpp.git synced 2025-01-20 00:31:15 +01:00
llama.cpp/examples/rpc/README.md
Georgi Gerganov f3f65429c4
llama : reorganize source code + improve CMake ()
* scripts : update sync [no ci]

* files : relocate [no ci]

* ci : disable kompute build [no ci]

* cmake : fixes [no ci]

* server : fix mingw build

ggml-ci

* cmake : minor [no ci]

* cmake : link math library [no ci]

* cmake : build normal ggml library (not object library) [no ci]

* cmake : fix kompute build

ggml-ci

* make,cmake : fix LLAMA_CUDA + replace GGML_CDEF_PRIVATE

ggml-ci

* move public backend headers to the public include directory ()

* move public backend headers to the public include directory

* nix test

* spm : fix metal header

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* scripts : fix sync paths [no ci]

* scripts : sync ggml-blas.h [no ci]

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-26 18:33:02 +03:00

75 lines
2.3 KiB
Markdown

## Overview
The `rpc-server` allows running `ggml` backend on a remote host.
The RPC backend communicates with one or several instances of `rpc-server` and offloads computations to them.
This can be used for distributed LLM inference with `llama.cpp` in the following way:
```mermaid
flowchart TD
rpcb---|TCP|srva
rpcb---|TCP|srvb
rpcb-.-|TCP|srvn
subgraph hostn[Host N]
srvn[rpc-server]-.-backend3["Backend (CUDA,Metal,etc.)"]
end
subgraph hostb[Host B]
srvb[rpc-server]---backend2["Backend (CUDA,Metal,etc.)"]
end
subgraph hosta[Host A]
srva[rpc-server]---backend["Backend (CUDA,Metal,etc.)"]
end
subgraph host[Main Host]
ggml[llama.cpp]---rpcb[RPC backend]
end
style hostn stroke:#66,stroke-width:2px,stroke-dasharray: 5 5
```
Each host can run a different backend, e.g. one with CUDA and another with Metal.
You can also run multiple `rpc-server` instances on the same host, each with a different backend.
## Usage
On each host, build the corresponding backend with `cmake` and add `-DGGML_RPC=ON` to the build options.
For example, to build the CUDA backend with RPC support:
```bash
mkdir build-rpc-cuda
cd build-rpc-cuda
cmake .. -DGGML_CUDA=ON -DGGML_RPC=ON
cmake --build . --config Release
```
Then, start the `rpc-server` with the backend:
```bash
$ bin/rpc-server -p 50052
create_backend: using CUDA backend
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA T1200 Laptop GPU, compute capability 7.5, VMM: yes
Starting RPC server on 0.0.0.0:50052
```
When using the CUDA backend, you can specify the device with the `CUDA_VISIBLE_DEVICES` environment variable, e.g.:
```bash
$ CUDA_VISIBLE_DEVICES=0 bin/rpc-server -p 50052
```
This way you can run multiple `rpc-server` instances on the same host, each with a different CUDA device.
On the main host build `llama.cpp` only with `-DGGML_RPC=ON`:
```bash
mkdir build-rpc
cd build-rpc
cmake .. -DGGML_RPC=ON
cmake --build . --config Release
```
Finally, use the `--rpc` option to specify the host and port of each `rpc-server`:
```bash
$ bin/llama-cli -m ../models/tinyllama-1b/ggml-model-f16.gguf -p "Hello, my name is" --repeat-penalty 1.0 -n 64 --rpc 192.168.88.10:50052,192.168.88.11:50052 -ngl 99
```