mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-19 08:20:10 +01:00
621e86b331
* server: bench: Init a bench scenario with K6 See #5827 * server: bench: EOL EOF * server: bench: PR feedback and improved k6 script configuration * server: bench: remove llamacpp_completions_tokens_seconds as it include prompt processing time and it's misleading server: bench: add max_tokens from SERVER_BENCH_MAX_TOKENS server: bench: increase truncated rate to 80% before failing * server: bench: fix doc * server: bench: change gauge custom metrics to trend * server: bench: change gauge custom metrics to trend server: bench: add trend custom metrics for total tokens per second average * server: bench: doc add an option to debug http request * server: bench: filter dataset too short and too long sequences * server: bench: allow to filter out conversation in the dataset based on env variable * server: bench: fix assistant message sent instead of user message * server: bench: fix assistant message sent instead of user message * server : add defrag thold parameter * server: bench: select prompts based on the current iteration id not randomly to make the bench more reproducible --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
89 lines
3.1 KiB
Markdown
89 lines
3.1 KiB
Markdown
### Server benchmark tools
|
|
|
|
Benchmark is using [k6](https://k6.io/).
|
|
|
|
##### Install k6
|
|
|
|
Follow instruction from: https://k6.io/docs/get-started/installation/
|
|
|
|
Example for ubuntu:
|
|
```shell
|
|
snap install k6
|
|
```
|
|
|
|
#### Download a dataset
|
|
|
|
This dataset was originally proposed in [vLLM benchmarks](https://github.com/vllm-project/vllm/blob/main/benchmarks/README.md).
|
|
|
|
```shell
|
|
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
|
```
|
|
|
|
#### Download a model
|
|
Example for PHI-2
|
|
|
|
```shell
|
|
../../../scripts/hf.sh --repo ggml-org/models --file phi-2/ggml-model-q4_0.gguf
|
|
```
|
|
|
|
#### Start the server
|
|
The server must answer OAI Chat completion requests on `http://localhost:8080/v1` or according to the environment variable `SERVER_BENCH_URL`.
|
|
|
|
Example:
|
|
```shell
|
|
server --host localhost --port 8080 \
|
|
--model ggml-model-q4_0.gguf \
|
|
--cont-batching \
|
|
--metrics \
|
|
--parallel 8 \
|
|
--batch-size 512 \
|
|
--ctx-size 4096 \
|
|
--log-format text \
|
|
-ngl 33
|
|
```
|
|
|
|
#### Run the benchmark
|
|
|
|
For 500 chat completions request with 8 concurrent users during maximum 10 minutes, run:
|
|
```shell
|
|
k6 run script.js --duration 10m --iterations 500 --vus 8
|
|
```
|
|
|
|
The benchmark values can be overridden with:
|
|
- `SERVER_BENCH_URL` server url prefix for chat completions, default `http://localhost:8080/v1`
|
|
- `SERVER_BENCH_N_PROMPTS` total prompts to randomly select in the benchmark, default `480`
|
|
- `SERVER_BENCH_MODEL_ALIAS` model alias to pass in the completion request, default `my-model`
|
|
- `SERVER_BENCH_MAX_TOKENS` max tokens to predict, default: `512`
|
|
- `SERVER_BENCH_DATASET` path to the benchmark dataset file
|
|
- `SERVER_BENCH_MAX_PROMPT_TOKENS` maximum prompt tokens to filter out in the dataset: default `1024`
|
|
- `SERVER_BENCH_MAX_CONTEXT` maximum context size of the completions request to filter out in the dataset: prompt + predicted tokens, default `2048`
|
|
|
|
Note: the local tokenizer is just a string space split, real number of tokens will differ.
|
|
|
|
Or with [k6 options](https://k6.io/docs/using-k6/k6-options/reference/):
|
|
|
|
```shell
|
|
SERVER_BENCH_N_PROMPTS=500 k6 run script.js --duration 10m --iterations 500 --vus 8
|
|
```
|
|
|
|
To [debug http request](https://k6.io/docs/using-k6/http-debugging/) use `--http-debug="full"`.
|
|
|
|
#### Metrics
|
|
|
|
Following metrics are available computed from the OAI chat completions response `usage`:
|
|
- `llamacpp_tokens_second` Trend of `usage.total_tokens / request duration`
|
|
- `llamacpp_prompt_tokens` Trend of `usage.prompt_tokens`
|
|
- `llamacpp_prompt_tokens_total_counter` Counter of `usage.prompt_tokens`
|
|
- `llamacpp_completion_tokens` Trend of `usage.completion_tokens`
|
|
- `llamacpp_completion_tokens_total_counter` Counter of `usage.completion_tokens`
|
|
- `llamacpp_completions_truncated_rate` Rate of completions truncated, i.e. if `finish_reason === 'length'`
|
|
- `llamacpp_completions_stop_rate` Rate of completions stopped by the model, i.e. if `finish_reason === 'stop'`
|
|
|
|
The script will fail if too many completions are truncated, see `llamacpp_completions_truncated_rate`.
|
|
|
|
K6 metrics might be compared against [server metrics](../README.md), with:
|
|
|
|
```shell
|
|
curl http://localhost:8080/metrics
|
|
```
|