* Fix import of llama2.c models that don't share weights between embedding layers * llama2c: reinstate ggmlv3 conversion output + update readme w/ gguf conv * llama2.c: comment out legacy "load from ggml model" logic * llama2.c: convert special-cased "<0xXX>" single byte tokens from tokenizer.bin
Convert llama2.c model to ggml
This example reads weights from project llama2.c and saves them in ggml compatible format. The vocab that is available in models/ggml-vocab.bin
is used by default.
To convert the model first download the models from the llma2.c repository:
$ make -j
After successful compilation, following usage options are available:
usage: ./convert-llama2c-to-ggml [options]
options:
-h, --help show this help message and exit
--copy-vocab-from-model FNAME model path from which to copy vocab (default 'tokenizer.bin')
--llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model
--llama2c-output-model FNAME model path to save the converted llama2.c model (default ak_llama_model.bin')
An example command using a model from karpathy/tinyllamas is as follows:
$ ./convert-llama2c-to-ggml --copy-vocab-from-model ../llama2.c/tokenizer.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.ggmlv3.bin
For now the generated model is in the legacy GGJTv3 format, so you need to convert it to gguf manually:
$ python ./convert-llama-ggmlv3-to-gguf.py --eps 1e-5 --input stories42M.ggmlv3.bin --output stories42M.gguf.bin
Now you can use the model with a command like:
$ ./main -m stories42M.gguf.bin -p "One day, Lily met a Shoggoth" -n 500 -c 256