llama.cpp/src/llama-context.cpp
Georgi Gerganov f66f582927
llama : refactor src/llama.cpp (#10902)
* llama : scatter llama.cpp into multiple modules (wip)

* llama : control-vector -> adapter

* llama : arch

* llama : mmap

ggml-ci

* ci : remove BUILD_SHARED_LIBS=OFF

ggml-ci

* llama : arch (cont)

ggml-ci

* llama : chat

ggml-ci

* llama : model

ggml-ci

* llama : hparams

ggml-ci

* llama : adapter

ggml-ci

* examples : fix

ggml-ci

* rebase

ggml-ci

* minor

* llama : kv cache

ggml-ci

* llama : impl

ggml-ci

* llama : batch

ggml-ci

* cont

ggml-ci

* llama : context

ggml-ci

* minor

* llama : context (cont)

ggml-ci

* llama : model loader

ggml-ci

* common : update lora

ggml-ci

* llama : quant

ggml-ci

* llama : quant (cont)

ggml-ci

* minor [no ci]
2025-01-03 10:18:53 +02:00

1772 lines
64 KiB
C++

#include "llama-context.h"
#include <cassert>
#include <cmath>
#include <cstring>
#include <stdexcept>
void llama_set_k_shift(struct llama_context & lctx) {
const int64_t kv_size = lctx.kv_self.size;
assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
int32_t * data = (int32_t *) lctx.inp_K_shift->data;
for (int i = 0; i < kv_size; ++i) {
data[i] = lctx.kv_self.cells[i].delta;
}
}
void llama_set_s_copy(struct llama_context & lctx) {
const int64_t kv_size = lctx.kv_self.size;
assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
int32_t * data = (int32_t *) lctx.inp_s_copy->data;
for (int i = 0; i < kv_size; ++i) {
data[i] = lctx.kv_self.cells[i].src;
}
}
// llama input
static int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
// TODO move to hparams if a T5 variant appears that uses a different value
const int64_t max_distance = 128;
if (bidirectional) {
n_buckets >>= 1;
}
const int64_t max_exact = n_buckets >> 1;
int32_t relative_position = x - y;
int32_t relative_bucket = 0;
if (bidirectional) {
relative_bucket += (relative_position > 0) * n_buckets;
relative_position = abs(relative_position);
} else {
relative_position = -std::min<int32_t>(relative_position, 0);
}
int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);
return relative_bucket;
}
void llama_set_inputs(llama_context & lctx, const llama_ubatch & ubatch) {
//
// set input data
//
const auto & hparams = lctx.model.hparams;
const auto & cparams = lctx.cparams;
const auto & kv_self = lctx.kv_self;
if (ubatch.token) {
const int64_t n_tokens = ubatch.n_tokens;
ggml_backend_tensor_set(lctx.inp_tokens, ubatch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
}
if (ubatch.embd) {
const int64_t n_embd = hparams.n_embd;
const int64_t n_tokens = ubatch.n_tokens;
ggml_backend_tensor_set(lctx.inp_embd, ubatch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
}
if (ubatch.pos && lctx.inp_pos) {
const int64_t n_tokens = ubatch.n_tokens;
auto n_pos = lctx.n_pos_per_token;
ggml_backend_tensor_set(lctx.inp_pos, ubatch.pos, 0, n_tokens*n_pos*ggml_element_size(lctx.inp_pos));
}
if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
//GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
if (!lctx.inp_out_ids) {
LLAMA_LOG_WARN("%s: 'lctx.inp_out_ids' is not created\n", __func__);
} else {
const int64_t n_tokens = ubatch.n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
int32_t * data = (int32_t *) lctx.inp_out_ids->data;
if (lctx.n_outputs == n_tokens) {
for (int i = 0; i < n_tokens; ++i) {
data[i] = i;
}
} else if (ubatch.output) {
int32_t n_outputs = 0;
for (int i = 0; i < n_tokens; ++i) {
if (ubatch.output[i]) {
data[n_outputs++] = i;
}
}
// the graph needs to have been passed the correct number of outputs
GGML_ASSERT(lctx.n_outputs == n_outputs);
} else if (lctx.n_outputs == 1) {
// only keep last output
data[0] = n_tokens - 1;
} else {
GGML_ASSERT(lctx.n_outputs == 0);
}
}
}
GGML_ASSERT(
// (!a || b) is a logical implication (a -> b)
// !hparams.causal_attn -> !cparams.causal_attn
(hparams.causal_attn || !cparams.causal_attn) &&
"causal attention is not supported by this model"
);
if (lctx.inp_KQ_mask || lctx.inp_KQ_mask_swa) {
// NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
if (cparams.causal_attn && !lctx.is_encoding) {
const int64_t n_kv = kv_self.n;
const int64_t n_tokens = ubatch.n_tokens;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
const int64_t n_seqs = ubatch.n_seqs;
float * data = nullptr;
float * data_swa = nullptr;
if (lctx.inp_KQ_mask) {
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
data = (float *) lctx.inp_KQ_mask->data;
}
if (lctx.inp_KQ_mask_swa) {
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_swa->buffer));
data_swa = (float *) lctx.inp_KQ_mask_swa->data;
}
// For causal attention, use only the previous KV cells
// of the correct sequence for each token of the ubatch.
// It's assumed that if a token in the batch has multiple sequences, they are equivalent.
for (int h = 0; h < 1; ++h) {
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[s][0];
for (int j = 0; j < n_seq_tokens; ++j) {
const llama_pos pos = ubatch.pos[s*n_seq_tokens + j];
for (int i = 0; i < n_kv; ++i) {
float f;
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
f = -INFINITY;
} else {
if (hparams.use_alibi) {
f = -std::abs(kv_self.cells[i].pos - pos);
} else {
f = 0.0f;
}
}
if (data) {
data[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
}
// may need to cut off old tokens for sliding window
if (data_swa) {
if (pos - kv_self.cells[i].pos >= (int32_t)hparams.n_swa) {
f = -INFINITY;
}
data_swa[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
}
}
}
}
if (data) {
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
for (int j = 0; j < n_kv; ++j) {
data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
}
}
}
if (data_swa) {
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
for (int j = 0; j < n_kv; ++j) {
data_swa[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
}
}
}
}
} else {
const int64_t n_tokens = ubatch.n_tokens;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
const int64_t n_seqs = ubatch.n_seqs;
// when using kv cache, the mask needs to match the kv cache size
const int64_t n_stride = hparams.causal_attn && !lctx.is_encoding ? kv_self.n : n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
float * data = (float *) lctx.inp_KQ_mask->data;
for (int h = 0; h < 1; ++h) {
for (int s1 = 0; s1 < n_seqs; ++s1) {
const llama_seq_id seq_id = ubatch.seq_id[s1][0];
for (int j = 0; j < n_seq_tokens; ++j) {
const int32_t tj = s1*n_seq_tokens + j;
for (int s0 = 0; s0 < n_seqs; ++s0) {
for (int i = 0; i < n_seq_tokens; ++i) {
const int32_t ti = s0*n_seq_tokens + i;
float f = -INFINITY;
for (int s = 0; s < ubatch.n_seq_id[s0]; ++s) {
if (ubatch.seq_id[s0][s] == seq_id) {
if (hparams.use_alibi) {
f = -std::abs(ubatch.pos[ti] - ubatch.pos[tj]);
} else {
f = 0.0f;
}
break;
}
}
data[h*(n_tokens*n_tokens) + tj*n_stride + ti] = f;
}
}
for (int i = n_tokens; i < n_stride; ++i) {
data[h*(n_tokens*n_tokens) + tj*n_stride + i] = -INFINITY;
}
}
}
}
}
}
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
const int64_t n_tokens = ubatch.n_tokens;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
const int64_t n_seqs = ubatch.n_seqs;
GGML_ASSERT(lctx.inp_mean);
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
float * data = (float *) lctx.inp_mean->data;
memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
std::vector<uint64_t> sum(n_tokens, 0);
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[s][0];
// TODO: adapt limits to n_seqs when ubatch.equal_seqs is true
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
sum[seq_id] += ubatch.n_seq_tokens;
}
std::vector<float> div(n_tokens, 0.0f);
for (int i = 0; i < n_tokens; ++i) {
const uint64_t s = sum[i];
if (s > 0) {
div[i] = 1.0f/float(s);
}
}
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[s][0];
for (int i = 0; i < n_seq_tokens; ++i) {
data[seq_id*n_tokens + s*n_seq_tokens + i] = div[seq_id];
}
}
}
if (cparams.embeddings && (
cparams.pooling_type == LLAMA_POOLING_TYPE_CLS ||
cparams.pooling_type == LLAMA_POOLING_TYPE_RANK)) {
const int64_t n_tokens = ubatch.n_tokens;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
const int64_t n_seqs = ubatch.n_seqs;
GGML_ASSERT(lctx.inp_cls);
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
uint32_t * data = (uint32_t *) lctx.inp_cls->data;
memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[s][0];
// TODO: adapt limits to n_seqs when ubatch.equal_seqs is true
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS or RANK");
for (int i = 0; i < n_seq_tokens; ++i) {
const llama_pos pos = ubatch.pos[s*n_seq_tokens + i];
if (pos == 0) {
data[seq_id] = s*n_seq_tokens + i;
}
}
}
}
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
const int64_t n_tokens = ubatch.n_tokens;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
const int64_t n_seqs = ubatch.n_seqs;
GGML_ASSERT(lctx.inp_cls);
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
uint32_t * data = (uint32_t *) lctx.inp_cls->data;
memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
std::vector<int> last_pos(n_tokens, -1);
std::vector<int> last_row(n_tokens, -1);
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[s][0];
// TODO: adapt limits to n_seqs when ubatch.equal_seqs is true
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST");
for (int i = 0; i < n_seq_tokens; ++i) {
const llama_pos pos = ubatch.pos[s*n_seq_tokens + i];
if (pos >= last_pos[seq_id]) {
last_pos[seq_id] = pos;
last_row[seq_id] = s*n_seq_tokens + i;
}
}
}
for (int i = 0; i < n_tokens; ++i) {
if (last_row[i] >= 0) {
data[i] = last_row[i];
}
}
}
if (kv_self.recurrent) {
const int64_t n_kv = kv_self.n;
if (lctx.inp_s_mask) {
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
float * data = (float *) lctx.inp_s_mask->data;
// clear unused states
for (int i = 0; i < n_kv; ++i) {
const uint32_t cell_id = i + kv_self.head;
llama_kv_cell & kv_cell = lctx.kv_self.cells[cell_id];
data[i] = (float) (kv_cell.src >= 0);
// only clear once
if (kv_cell.src < 0) {
kv_cell.src = cell_id;
}
}
}
if (lctx.inp_s_copy) {
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
int32_t * data = (int32_t *) lctx.inp_s_copy->data;
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
for (uint32_t i = 0; i < n_kv; ++i) {
const uint32_t cell_id = i + kv_self.head;
llama_kv_cell & kv_cell = lctx.kv_self.cells[cell_id];
// prevent out-of-bound sources
if (kv_cell.src < 0 || (uint32_t) kv_cell.src >= kv_self.size) {
kv_cell.src = cell_id;
}
data[i] = kv_cell.src;
// ensure copy only happens once
if (kv_cell.src != (int32_t) cell_id) {
kv_cell.src = cell_id;
}
}
}
}
if (lctx.inp_pos_bucket) {
const int64_t n_tokens = ubatch.n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_pos_bucket->buffer));
GGML_ASSERT(!ubatch.equal_seqs); // TODO: use ubatch.n_seqs instead of failing
int32_t * data = (int32_t *) lctx.inp_pos_bucket->data;
if (!lctx.is_encoding) {
const int64_t n_kv = kv_self.n;
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
for (int i = 0; i < n_kv; ++i) {
data[h*(n_kv*n_tokens) + j*n_kv + i] = llama_relative_position_bucket(lctx.kv_self.cells[i].pos, ubatch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding);
}
}
}
} else {
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
for (int i = 0; i < n_tokens; ++i) {
data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch.pos[i], ubatch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding);
}
}
}
}
}
if (!lctx.is_encoding && lctx.inp_embd_enc) {
assert(lctx.inp_embd_enc->type == GGML_TYPE_F32);
assert((size_t) ggml_nelements(lctx.inp_embd_enc) == lctx.embd_enc.size());
ggml_backend_tensor_set(lctx.inp_embd_enc, lctx.embd_enc.data(), 0, ggml_nbytes(lctx.inp_embd_enc));
}
if (!lctx.is_encoding && lctx.inp_KQ_mask_cross) {
const int64_t n_output_enc = lctx.embd_enc.size() / hparams.n_embd;
const int64_t n_tokens = ubatch.n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_cross->buffer));
GGML_ASSERT(!ubatch.equal_seqs); // TODO: use ubatch.n_seqs instead of failing
float * data = (float *) lctx.inp_KQ_mask_cross->data;
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
for (int i = 0; i < n_output_enc; ++i) {
float f = -INFINITY;
for (int s = 0; s < ubatch.n_seq_id[j]; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[j][s];
if (lctx.seq_ids_enc[i].find(seq_id) != lctx.seq_ids_enc[i].end()) {
f = 0.0f;
}
}
data[h*(n_output_enc*n_tokens) + j*n_output_enc + i] = f;
}
}
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
for (int j = 0; j < n_output_enc; ++j) {
data[h*(n_output_enc*n_tokens) + i*n_output_enc + j] = -INFINITY;
}
}
}
}
}
// llama output
size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs) {
const auto & cparams = lctx.cparams;
const auto & hparams = lctx.model.hparams;
const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
const auto n_batch = cparams.n_batch;
const auto n_vocab = hparams.n_vocab;
const auto n_embd = hparams.n_embd;
// TODO: use a per-batch flag for logits presence instead
const bool has_logits = !cparams.embeddings;
const bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
if (lctx.output_ids.empty()) {
// init, never resized afterwards
lctx.output_ids.resize(n_batch);
}
const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output.get()) : 0;
const size_t new_size = (logits_size + embd_size) * sizeof(float);
// alloc only when more than the current capacity is required
// TODO: also consider shrinking the buffer
if (!lctx.buf_output || prev_size < new_size) {
if (lctx.buf_output) {
#ifndef NDEBUG
// This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
#endif
lctx.buf_output = nullptr;
lctx.logits = nullptr;
lctx.embd = nullptr;
}
auto * buft = ggml_backend_cpu_buffer_type();
// try to use the host buffer of the device where the output tensor is allocated for faster transfer to system memory
auto * output_dev = lctx.model.dev_output.dev;
auto * output_dev_host_buft = output_dev ? ggml_backend_dev_host_buffer_type(output_dev) : nullptr;
if (output_dev_host_buft) {
buft = output_dev_host_buft;
}
lctx.buf_output.reset(ggml_backend_buft_alloc_buffer(buft, new_size));
if (lctx.buf_output == nullptr) {
LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
return 0;
}
}
float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output.get());
lctx.logits = has_logits ? output_base : nullptr;
lctx.embd = has_embd ? output_base + logits_size : nullptr;
lctx.output_size = n_outputs_max;
lctx.logits_size = logits_size;
lctx.embd_size = embd_size;
// set all ids as invalid (negative)
std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
ggml_backend_buffer_clear(lctx.buf_output.get(), 0);
lctx.n_outputs = 0;
return n_outputs_max;
}
void llama_output_reorder(struct llama_context & ctx) {
std::vector<size_t> & out_ids = ctx.sbatch.out_ids;
if (!out_ids.empty()) {
const uint32_t n_vocab = ctx.model.hparams.n_vocab;
const uint32_t n_embd = ctx.model.hparams.n_embd;
const int32_t n_outputs = ctx.n_outputs;
GGML_ASSERT((size_t) n_outputs == out_ids.size());
// TODO: is there something more efficient which also minimizes swaps?
// selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort)
for (int32_t i = 0; i < n_outputs - 1; ++i) {
int32_t j_min = i;
for (int32_t j = i + 1; j < n_outputs; ++j) {
if (out_ids[j] < out_ids[j_min]) {
j_min = j;
}
}
if (j_min == i) { continue; }
std::swap(out_ids[i], out_ids[j_min]);
if (ctx.logits_size > 0) {
for (uint32_t k = 0; k < n_vocab; k++) {
std::swap(ctx.logits[i*n_vocab + k], ctx.logits[j_min*n_vocab + k]);
}
}
if (ctx.embd_size > 0) {
for (uint32_t k = 0; k < n_embd; k++) {
std::swap(ctx.embd[i*n_embd + k], ctx.embd[j_min*n_embd + k]);
}
}
}
std::fill(ctx.output_ids.begin(), ctx.output_ids.end(), -1);
for (int32_t i = 0; i < n_outputs; ++i) {
ctx.output_ids[out_ids[i]] = i;
}
out_ids.clear();
}
}
//
// interface implementation
//
void llama_free(struct llama_context * ctx) {
delete ctx;
}
uint32_t llama_n_ctx(const struct llama_context * ctx) {
return ctx->cparams.n_ctx;
}
uint32_t llama_n_batch(const struct llama_context * ctx) {
return ctx->cparams.n_batch;
}
uint32_t llama_n_ubatch(const struct llama_context * ctx) {
return ctx->cparams.n_ubatch;
}
uint32_t llama_n_seq_max(const struct llama_context * ctx) {
return ctx->kv_self.size;
}
const struct llama_model * llama_get_model(const struct llama_context * ctx) {
return &ctx->model;
}
enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
return ctx->cparams.pooling_type;
}
void llama_attach_threadpool(
struct llama_context * ctx,
ggml_threadpool_t threadpool,
ggml_threadpool_t threadpool_batch) {
ctx->threadpool = threadpool;
ctx->threadpool_batch = threadpool_batch ? threadpool_batch : threadpool;
}
void llama_detach_threadpool(struct llama_context * ctx) {
ctx->threadpool = nullptr;
ctx->threadpool_batch = nullptr;
}
void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch) {
ctx->cparams.n_threads = n_threads;
ctx->cparams.n_threads_batch = n_threads_batch;
}
int32_t llama_n_threads(struct llama_context * ctx) {
return ctx->cparams.n_threads;
}
int32_t llama_n_threads_batch(struct llama_context * ctx) {
return ctx->cparams.n_threads_batch;
}
void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
ctx->abort_callback = abort_callback;
ctx->abort_callback_data = abort_callback_data;
for (auto & backend : ctx->backends) {
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(backend.get()));
auto * set_abort_callback_fn = (ggml_backend_set_abort_callback_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_abort_callback");
if (set_abort_callback_fn) {
set_abort_callback_fn(backend.get(), ctx->abort_callback, ctx->abort_callback_data);
}
}
}
void llama_set_embeddings(struct llama_context * ctx, bool embeddings) {
ctx->cparams.embeddings = embeddings;
}
void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
ctx->cparams.causal_attn = causal_attn;
}
void llama_synchronize(struct llama_context * ctx) {
ggml_backend_sched_synchronize(ctx->sched.get());
// FIXME: if multiple single tokens are evaluated without a synchronization,
// the stats will be added to the prompt evaluation stats
// this should only happen when using batch size 1 to evaluate a batch
// add the evaluation to the stats
if (ctx->n_queued_tokens == 1) {
if (!ctx->cparams.no_perf) {
ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
}
ctx->n_eval++;
} else if (ctx->n_queued_tokens > 1) {
if (!ctx->cparams.no_perf) {
ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
}
ctx->n_p_eval += ctx->n_queued_tokens;
}
// get a more accurate load time, upon first eval
if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
ctx->has_evaluated_once = true;
}
ctx->n_queued_tokens = 0;
ctx->t_compute_start_us = 0;
}
float * llama_get_logits(struct llama_context * ctx) {
llama_synchronize(ctx);
// reorder logits for backward compatibility
// TODO: maybe deprecate this
llama_output_reorder(*ctx);
return ctx->logits;
}
float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
int32_t j = -1;
llama_synchronize(ctx);
try {
if (ctx->logits == nullptr) {
throw std::runtime_error("no logits");
}
if (i < 0) {
j = ctx->n_outputs + i;
if (j < 0) {
throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
}
} else if ((size_t) i >= ctx->output_ids.size()) {
throw std::runtime_error(format("out of range [0, %zu)", ctx->output_ids.size()));
} else {
j = ctx->output_ids[i];
}
if (j < 0) {
throw std::runtime_error(format("batch.logits[%d] != true", i));
}
if (j >= ctx->n_outputs) {
// This should not happen
throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
}
return ctx->logits + j*ctx->model.hparams.n_vocab;
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
#ifndef NDEBUG
GGML_ABORT("fatal error");
#else
return nullptr;
#endif
}
}
float * llama_get_embeddings(struct llama_context * ctx) {
llama_synchronize(ctx);
// reorder embeddings for backward compatibility
// TODO: maybe deprecate this
llama_output_reorder(*ctx);
return ctx->embd;
}
float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
int32_t j = -1;
llama_synchronize(ctx);
try {
if (ctx->embd == nullptr) {
throw std::runtime_error("no embeddings");
}
if (i < 0) {
j = ctx->n_outputs + i;
if (j < 0) {
throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
}
} else if ((size_t) i >= ctx->output_ids.size()) {
throw std::runtime_error(format("out of range [0, %zu)", ctx->output_ids.size()));
} else {
j = ctx->output_ids[i];
}
if (j < 0) {
throw std::runtime_error(format("batch.logits[%d] != true", i));
}
if (j >= ctx->n_outputs) {
// This should not happen
throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
}
return ctx->embd + j*ctx->model.hparams.n_embd;
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
#ifndef NDEBUG
GGML_ABORT("fatal error");
#else
return nullptr;
#endif
}
}
float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
llama_synchronize(ctx);
auto it = ctx->embd_seq.find(seq_id);
if (it == ctx->embd_seq.end()) {
return nullptr;
}
return it->second.data();
}
// llama state API
// deprecated
size_t llama_get_state_size(struct llama_context * ctx) {
return llama_state_get_size(ctx);
}
// deprecated
size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
return llama_state_get_data(ctx, dst, -1);
}
// deprecated
size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
return llama_state_set_data(ctx, src, -1);
}
// deprecated
bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
}
// deprecated
bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
return llama_state_save_file(ctx, path_session, tokens, n_token_count);
}
// TODO: replace all non-fatal assertions with returned errors or exceptions
struct llama_data_write {
virtual void write(const void * src, size_t size) = 0;
virtual void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) = 0;
virtual size_t get_size_written() = 0;
virtual ~llama_data_write() = default;
void write_string(const std::string & str) {
uint32_t str_size = str.size();
write(&str_size, sizeof(str_size));
write(str.data(), str_size);
}
void write_model_info(const struct llama_context * ctx) {
const std::string arch_str = llm_arch_name(ctx->model.arch);
write_string(arch_str);
// TODO: add more model-specific info which should prevent loading the session file if not identical
}
//void write_rng(const std::mt19937 & rng) {
// std::ostringstream rng_ss;
// rng_ss << rng;
// const std::string & rng_str = rng_ss.str();
// write_string(rng_str);
//}
void write_output_ids(struct llama_context * ctx) {
llama_output_reorder(*ctx);
const uint32_t n_outputs = ctx->n_outputs;
std::vector<int32_t> output_pos;
const size_t n_batch = ctx->cparams.n_batch;
const auto & output_ids = ctx->output_ids;
GGML_ASSERT(n_outputs <= ctx->output_size);
output_pos.resize(n_outputs);
// build a more compact representation of the output ids
for (size_t i = 0; i < n_batch; ++i) {
// map an output id to a position in the batch
int32_t pos = output_ids[i];
if (pos >= 0) {
GGML_ASSERT((uint32_t) pos < n_outputs);
output_pos[pos] = i;
}
}
write(&n_outputs, sizeof(n_outputs));
if (n_outputs) {
write(output_pos.data(), n_outputs * sizeof(int32_t));
}
}
void write_logits(const struct llama_context * ctx) {
const uint64_t logits_size = std::min((uint64_t) ctx->logits_size, (uint64_t) ctx->n_outputs * ctx->model.hparams.n_vocab);
write(&logits_size, sizeof(logits_size));
if (logits_size) {
write(ctx->logits, logits_size * sizeof(float));
}
}
void write_embeddings(const struct llama_context * ctx) {
const uint64_t embeddings_size = std::min((uint64_t) ctx->embd_size, (uint64_t) ctx->n_outputs * ctx->model.hparams.n_embd);
write(&embeddings_size, sizeof(embeddings_size));
if (embeddings_size) {
write(ctx->embd, embeddings_size * sizeof(float));
}
}
void write_kv_cache_meta(const llama_kv_cache & kv_self, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) {
for (const auto & range : cell_ranges) {
for (uint32_t i = range.first; i < range.second; ++i) {
const auto & cell = kv_self.cells[i];
const llama_pos pos = cell.pos;
const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0;
write(&pos, sizeof(pos));
write(&n_seq_id, sizeof(n_seq_id));
if (n_seq_id) {
for (auto seq_id : cell.seq_id) {
write(&seq_id, sizeof(seq_id));
}
}
}
}
}
void write_kv_cache_data(const struct llama_context * ctx, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) {
const struct llama_kv_cache & kv_self = ctx->kv_self;
const struct llama_hparams & hparams = ctx->model.hparams;
const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
const uint32_t n_layer = hparams.n_layer;
write(&v_trans, sizeof(v_trans));
write(&n_layer, sizeof(n_layer));
std::vector<uint8_t> tmp_buf;
// Iterate and write all the keys first, each row is a cell
// Get whole range at a time
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
// Write key type
const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
write(&k_type_i, sizeof(k_type_i));
// Write row size of key
const uint64_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
write(&k_size_row, sizeof(k_size_row));
// Read each range of cells of k_size length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * k_size_row;
write_tensor_data(kv_self.k_l[il], range.first * k_size_row, buf_size);
}
}
if (!kv_self.v_trans) {
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Write value type
const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
write(&v_type_i, sizeof(v_type_i));
// Write row size of value
const uint64_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
write(&v_size_row, sizeof(v_size_row));
// Read each range of cells of v_size length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * v_size_row;
write_tensor_data(kv_self.v_l[il], range.first * v_size_row, buf_size);
}
}
} else {
// When v is transposed, we also need the element size and get the element ranges from each row
const uint32_t kv_size = kv_self.size;
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Write value type
const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
write(&v_type_i, sizeof(v_type_i));
// Write element size
const uint32_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
write(&v_size_el, sizeof(v_size_el));
// Write GQA embedding size
write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
// For each row, we get the element values of each cell
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
// Read each range of cells of v_size_el length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t src_offset = (range.first + j * kv_size) * v_size_el;
const size_t buf_size = range_size * v_size_el;
write_tensor_data(kv_self.v_l[il], src_offset, buf_size);
}
}
}
}
}
void write_kv_cache(const struct llama_context * ctx, llama_seq_id seq_id = -1) {
const struct llama_kv_cache & kv_self = ctx->kv_self;
std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
uint32_t cell_count = 0;
// Count the number of cells with the specified seq_id
// Find all the ranges of cells with this seq id (or all, when -1)
uint32_t cell_range_begin = kv_self.size;
for (uint32_t i = 0; i < kv_self.size; ++i) {
const auto & cell = kv_self.cells[i];
if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) {
++cell_count;
if (cell_range_begin == kv_self.size) {
cell_range_begin = i;
}
} else {
if (cell_range_begin != kv_self.size) {
cell_ranges.emplace_back(cell_range_begin, i);
cell_range_begin = kv_self.size;
}
}
}
if (cell_range_begin != kv_self.size) {
cell_ranges.emplace_back(cell_range_begin, kv_self.size);
}
// DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
uint32_t cell_count_check = 0;
for (const auto & range : cell_ranges) {
cell_count_check += range.second - range.first;
}
GGML_ASSERT(cell_count == cell_count_check);
write(&cell_count, sizeof(cell_count));
write_kv_cache_meta(kv_self, cell_ranges, seq_id);
write_kv_cache_data(ctx, cell_ranges);
}
};
struct llama_data_read {
virtual const uint8_t * read(size_t size) = 0;
virtual void read_to(void * dst, size_t size) = 0;
virtual size_t get_size_read() = 0;
virtual ~llama_data_read() = default;
void read_string(std::string & str) {
uint32_t str_size;
read_to(&str_size, sizeof(str_size));
str.assign((const char *) read(str_size), str_size);
}
// validate model information
void read_model_info(const struct llama_context * ctx) {
const std::string cur_arch_str = llm_arch_name(ctx->model.arch);
std::string arch_str;
read_string(arch_str);
if (cur_arch_str != arch_str) {
throw std::runtime_error(format("wrong model arch: '%s' instead of '%s'", arch_str.c_str(), cur_arch_str.c_str()));
}
// TODO: add more info which needs to be identical but which is not verified otherwise
}
//void read_rng(std::mt19937 & rng) {
// std::string rng_str;
// read_string(rng_str);
// std::istringstream rng_ss(rng_str);
// rng_ss >> rng;
// if (rng_ss.fail()) {
// throw std::runtime_error("failed to load RNG state");
// }
//}
void read_output_ids(struct llama_context * ctx) {
std::vector<int32_t> output_pos;
uint32_t n_outputs;
read_to(&n_outputs, sizeof(n_outputs));
if (n_outputs > llama_output_reserve(*ctx, n_outputs)) {
throw std::runtime_error("could not reserve outputs");
}
if (n_outputs) {
output_pos.resize(n_outputs);
read_to(output_pos.data(), n_outputs * sizeof(int32_t));
for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
int32_t id = output_pos[i];
if ((uint32_t) id >= ctx->cparams.n_batch) {
throw std::runtime_error(format("invalid output id, %d does not fit in batch size of %u", id, ctx->cparams.n_batch));
}
ctx->output_ids[id] = i;
}
ctx->n_outputs = n_outputs;
}
}
void read_logits(struct llama_context * ctx) {
uint64_t logits_size;
read_to(&logits_size, sizeof(logits_size));
if (ctx->logits_size < logits_size) {
throw std::runtime_error("logits buffer too small");
}
if (logits_size) {
read_to(ctx->logits, logits_size * sizeof(float));
}
}
void read_embeddings(struct llama_context * ctx) {
uint64_t embeddings_size;
read_to(&embeddings_size, sizeof(embeddings_size));
if (ctx->embd_size < embeddings_size) {
throw std::runtime_error("embeddings buffer too small");
}
if (embeddings_size) {
read_to(ctx->embd, embeddings_size * sizeof(float));
}
}
bool read_kv_cache_meta(struct llama_context * ctx, uint32_t cell_count, llama_seq_id dest_seq_id = -1) {
struct llama_kv_cache & kv_self = ctx->kv_self;
if (dest_seq_id != -1) {
// single sequence
llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
llama_ubatch batch = ctx->sbatch.reserve_ubatch(cell_count, /* has_embd */ false);
batch.n_tokens = cell_count;
batch.n_seq_tokens = cell_count;
batch.n_seqs = 1;
for (uint32_t i = 0; i < cell_count; ++i) {
llama_pos pos;
uint32_t n_seq_id;
read_to(&pos, sizeof(pos));
read_to(&n_seq_id, sizeof(n_seq_id));
if (n_seq_id != 0) {
LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
return false;
}
batch.pos[i] = pos;
}
batch.n_seq_id[0] = 1;
batch.seq_id[0] = &dest_seq_id;
if (!llama_kv_cache_find_slot(kv_self, batch)) {
LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
return false;
}
// DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
// Assume that this is one contiguous block of cells
GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
} else {
// whole KV cache restore
if (cell_count > kv_self.size) {
LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
return false;
}
llama_kv_cache_clear(kv_self);
for (uint32_t i = 0; i < cell_count; ++i) {
llama_kv_cell & cell = kv_self.cells[i];
llama_pos pos;
uint32_t n_seq_id;
read_to(&pos, sizeof(pos));
read_to(&n_seq_id, sizeof(n_seq_id));
cell.pos = pos;
for (uint32_t j = 0; j < n_seq_id; ++j) {
llama_seq_id seq_id;
read_to(&seq_id, sizeof(seq_id));
if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) {
LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx));
return false;
}
cell.seq_id.insert(seq_id);
if (kv_self.recurrent) {
int32_t & tail = kv_self.cells[seq_id].tail;
if (tail != -1) {
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail);
return false;
}
tail = i;
}
}
}
kv_self.head = 0;
kv_self.used = cell_count;
}
if (kv_self.recurrent) {
for (uint32_t i = 0; i < cell_count; ++i) {
uint32_t cell_id = kv_self.head + i;
// make sure the recurrent states will keep their restored state
kv_self.cells[cell_id].src = cell_id;
}
}
return true;
}
bool read_kv_cache_data(struct llama_context * ctx, uint32_t cell_count) {
const struct llama_hparams & hparams = ctx->model.hparams;
struct llama_kv_cache & kv_self = ctx->kv_self;
uint32_t v_trans;
uint32_t n_layer;
read_to(&v_trans, sizeof(v_trans));
read_to(&n_layer, sizeof(n_layer));
if (n_layer != hparams.n_layer) {
LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer);
return false;
}
if (cell_count > kv_self.size) {
LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, kv_self.size);
return false;
}
if (kv_self.v_trans != (bool) v_trans) {
LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
return false;
}
// For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
// Read type of key
int32_t k_type_i_ref;
read_to(&k_type_i_ref, sizeof(k_type_i_ref));
const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
if (k_type_i != k_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
return false;
}
// Read row size of key
uint64_t k_size_row_ref;
read_to(&k_size_row_ref, sizeof(k_size_row_ref));
const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
if (k_size_row != k_size_row_ref) {
LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
return false;
}
if (cell_count) {
// Read and set the keys for the whole cell range
ggml_backend_tensor_set(kv_self.k_l[il], read(cell_count * k_size_row), kv_self.head * k_size_row, cell_count * k_size_row);
}
}
if (!kv_self.v_trans) {
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Read type of value
int32_t v_type_i_ref;
read_to(&v_type_i_ref, sizeof(v_type_i_ref));
const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
if (v_type_i != v_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
return false;
}
// Read row size of value
uint64_t v_size_row_ref;
read_to(&v_size_row_ref, sizeof(v_size_row_ref));
const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
if (v_size_row != v_size_row_ref) {
LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
return false;
}
if (cell_count) {
// Read and set the values for the whole cell range
ggml_backend_tensor_set(kv_self.v_l[il], read(cell_count * v_size_row), kv_self.head * v_size_row, cell_count * v_size_row);
}
}
} else {
// For each layer, read the values for each cell (transposed)
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Read type of value
int32_t v_type_i_ref;
read_to(&v_type_i_ref, sizeof(v_type_i_ref));
const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
if (v_type_i != v_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
return false;
}
// Read element size of value
uint32_t v_size_el_ref;
read_to(&v_size_el_ref, sizeof(v_size_el_ref));
const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
if (v_size_el != v_size_el_ref) {
LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
return false;
}
// Read GQA embedding size
uint32_t n_embd_v_gqa_ref;
read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
if (n_embd_v_gqa != n_embd_v_gqa_ref) {
LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
return false;
}
if (cell_count) {
// For each row in the transposed matrix, read the values for the whole cell range
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
const size_t dst_offset = (kv_self.head + j * kv_self.size) * v_size_el;
ggml_backend_tensor_set(kv_self.v_l[il], read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
}
}
}
}
return true;
}
void read_kv_cache(struct llama_context * ctx, llama_seq_id seq_id = -1) {
uint32_t cell_count;
read_to(&cell_count, sizeof(cell_count));
bool res = read_kv_cache_meta(ctx, cell_count, seq_id) && read_kv_cache_data(ctx, cell_count);
if (!res) {
if (seq_id == -1) {
llama_kv_cache_clear(ctx);
} else {
llama_kv_cache_seq_rm(ctx, seq_id, -1, -1);
}
throw std::runtime_error("failed to restore kv cache");
}
}
};
struct llama_data_write_dummy : llama_data_write {
size_t size_written = 0;
llama_data_write_dummy() {}
void write(const void * /* src */, size_t size) override {
size_written += size;
}
void write_tensor_data(const struct ggml_tensor * /* tensor */, size_t /* offset */, size_t size) override {
size_written += size;
}
size_t get_size_written() override {
return size_written;
}
};
struct llama_data_write_buffer : llama_data_write {
uint8_t * ptr;
size_t buf_size = 0;
size_t size_written = 0;
llama_data_write_buffer(uint8_t * p, size_t len) : ptr(p), buf_size(len) {}
void write(const void * src, size_t size) override {
if (size > buf_size) {
throw std::runtime_error("unexpectedly reached end of buffer");
}
memcpy(ptr, src, size);
ptr += size;
size_written += size;
buf_size -= size;
}
void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) override {
if (size > buf_size) {
throw std::runtime_error("unexpectedly reached end of buffer");
}
ggml_backend_tensor_get(tensor, ptr, offset, size);
ptr += size;
size_written += size;
buf_size -= size;
}
size_t get_size_written() override {
return size_written;
}
};
struct llama_data_read_buffer : llama_data_read {
const uint8_t * ptr;
size_t buf_size = 0;
size_t size_read = 0;
llama_data_read_buffer(const uint8_t * p, size_t len) : ptr(p), buf_size(len) {}
const uint8_t * read(size_t size) override {
const uint8_t * base_ptr = ptr;
if (size > buf_size) {
throw std::runtime_error("unexpectedly reached end of buffer");
}
ptr += size;
size_read += size;
buf_size -= size;
return base_ptr;
}
void read_to(void * dst, size_t size) override {
memcpy(dst, read(size), size);
}
size_t get_size_read() override {
return size_read;
}
};
struct llama_data_write_file : llama_data_write {
llama_file * file;
size_t size_written = 0;
std::vector<uint8_t> temp_buffer;
llama_data_write_file(llama_file * f) : file(f) {}
void write(const void * src, size_t size) override {
file->write_raw(src, size);
size_written += size;
}
void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) override {
temp_buffer.resize(size);
ggml_backend_tensor_get(tensor, temp_buffer.data(), offset, size);
write(temp_buffer.data(), temp_buffer.size());
}
size_t get_size_written() override {
return size_written;
}
};
struct llama_data_read_file : llama_data_read {
llama_file * file;
size_t size_read = 0;
std::vector<uint8_t> temp_buffer;
llama_data_read_file(llama_file * f) : file(f) {}
void read_to(void * dst, size_t size) override {
file->read_raw(dst, size);
size_read += size;
}
const uint8_t * read(size_t size) override {
temp_buffer.resize(size);
read_to(temp_buffer.data(), size);
return temp_buffer.data();
}
size_t get_size_read() override {
return size_read;
}
};
/** copy state data into either a buffer or file depending on the passed in context
*
* file context:
* llama_file file("/path", "wb");
* llama_data_write_file data_ctx(&file);
* llama_state_get_data_internal(ctx, data_ctx);
*
* buffer context:
* std::vector<uint8_t> buf(max_size, 0);
* llama_data_write_buffer data_ctx(buf.data(), max_size);
* llama_state_get_data_internal(ctx, data_ctx);
*
*/
static size_t llama_state_get_data_internal(struct llama_context * ctx, llama_data_write & data_ctx) {
llama_synchronize(ctx);
data_ctx.write_model_info(ctx);
// copy outputs
data_ctx.write_output_ids(ctx);
data_ctx.write_logits(ctx);
data_ctx.write_embeddings(ctx);
data_ctx.write_kv_cache(ctx);
return data_ctx.get_size_written();
}
size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst, size_t size) {
llama_data_write_buffer data_ctx(dst, size);
try {
return llama_state_get_data_internal(ctx, data_ctx);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error saving state: %s\n", __func__, err.what());
return 0;
}
}
// Returns the *actual* size of the state.
// Intended to be used when saving to state to a buffer.
size_t llama_state_get_size(struct llama_context * ctx) {
llama_data_write_dummy data_ctx;
try {
return llama_state_get_data_internal(ctx, data_ctx);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error getting state size: %s\n", __func__, err.what());
return 0;
}
}
static size_t llama_state_set_data_internal(struct llama_context * ctx, llama_data_read & data_ctx) {
llama_synchronize(ctx);
data_ctx.read_model_info(ctx);
// set outputs
data_ctx.read_output_ids(ctx);
data_ctx.read_logits(ctx);
data_ctx.read_embeddings(ctx);
data_ctx.read_kv_cache(ctx);
return data_ctx.get_size_read();
}
// Sets the state reading from the specified source address
size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src, size_t size) {
llama_data_read_buffer data_ctx(src, size);
try {
return llama_state_set_data_internal(ctx, data_ctx);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error loading state: %s\n", __func__, err.what());
return 0;
}
}
static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
llama_file file(path_session, "rb");
// sanity checks
{
const uint32_t magic = file.read_u32();
const uint32_t version = file.read_u32();
if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
LLAMA_LOG_ERROR("%s: unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
return false;
}
}
// load the prompt
{
const uint32_t n_token_count = file.read_u32();
if (n_token_count > n_token_capacity) {
LLAMA_LOG_ERROR("%s: token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
return false;
}
file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
*n_token_count_out = n_token_count;
}
// restore the context state
{
const size_t n_state_size_cur = file.size() - file.tell();
llama_data_read_file data_ctx(&file);
const size_t n_read = llama_state_set_data_internal(ctx, data_ctx);
if (n_read != n_state_size_cur) {
LLAMA_LOG_ERROR("%s: did not read all of the session file data! size %zu, got %zu\n", __func__, n_state_size_cur, n_read);
return false;
}
}
return true;
}
bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
try {
return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error loading session file: %s\n", __func__, err.what());
return false;
}
}
static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
llama_file file(path_session, "wb");
file.write_u32(LLAMA_SESSION_MAGIC);
file.write_u32(LLAMA_SESSION_VERSION);
// save the prompt
file.write_u32((uint32_t) n_token_count);
file.write_raw(tokens, sizeof(llama_token) * n_token_count);
// save the context state using stream saving
llama_data_write_file data_ctx(&file);
llama_state_get_data_internal(ctx, data_ctx);
return true;
}
bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
try {
return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error saving session file: %s\n", __func__, err.what());
return false;
}
}
static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_write & data_ctx, llama_seq_id seq_id) {
llama_synchronize(ctx);
data_ctx.write_kv_cache(ctx, seq_id);
return data_ctx.get_size_written();
}
size_t llama_state_seq_get_size(struct llama_context * ctx, llama_seq_id seq_id) {
llama_data_write_dummy data_ctx;
return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
}
size_t llama_state_seq_get_data(struct llama_context * ctx, uint8_t * dst, size_t size, llama_seq_id seq_id) {
llama_data_write_buffer data_ctx(dst, size);
try {
return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error saving sequence state: %s\n", __func__, err.what());
return 0;
}
}
static size_t llama_state_seq_set_data_internal(struct llama_context * ctx, llama_data_read & data_ctx, llama_seq_id dest_seq_id) {
llama_synchronize(ctx);
data_ctx.read_kv_cache(ctx, dest_seq_id);
return data_ctx.get_size_read();
}
size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, size_t size, llama_seq_id dest_seq_id) {
llama_data_read_buffer data_ctx(src, size);
try {
return llama_state_seq_set_data_internal(ctx, data_ctx, dest_seq_id);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error loading sequence state: %s\n", __func__, err.what());
return 0;
}
}
static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
llama_file file(filepath, "wb");
file.write_u32(LLAMA_STATE_SEQ_MAGIC);
file.write_u32(LLAMA_STATE_SEQ_VERSION);
// save the prompt
file.write_u32((uint32_t) n_token_count);
file.write_raw(tokens, sizeof(llama_token) * n_token_count);
// save the context state using stream saving
llama_data_write_file data_ctx(&file);
llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
const size_t res = file.tell();
GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
return res;
}
static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
llama_file file(filepath, "rb");
// version checks
{
const uint32_t magic = file.read_u32();
const uint32_t version = file.read_u32();
if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
return 0;
}
}
// load the prompt
{
const uint32_t n_token_count = file.read_u32();
if (n_token_count > n_token_capacity) {
LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
return 0;
}
file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
*n_token_count_out = n_token_count;
}
// restore the context state
{
const size_t state_size = file.size() - file.tell();
llama_data_read_file data_ctx(&file);
const size_t nread = llama_state_seq_set_data_internal(ctx, data_ctx, dest_seq_id);
if (!nread) {
LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
return 0;
}
GGML_ASSERT(nread <= state_size);
GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
}
return file.tell();
}
size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
try {
return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error saving sequence state file: %s\n", __func__, err.what());
return 0;
}
}
size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
try {
return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error loading sequence state file: %s\n", __func__, err.what());
return 0;
}
}
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
struct llama_context * ctx
) {
return ctx->model.tensors_by_name;
}