llama.cpp/examples/simple/simple.cpp
Georgi Gerganov e0493800ce
simple : fix
2024-01-15 16:43:46 +02:00

228 lines
6.4 KiB
C++

#include "common.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
// a function that can be called for every computed node during graph evaluation
// the user can choose to whether to observe the data of the node depending on the tensor parameters
static bool observe_compute(struct ggml_tensor * t, bool ask, void * user_data) {
GGML_UNUSED(user_data);
// the scheduler is asking us if we want to observe this node
if (ask) {
// check if name contains soft_max (customize to your needs)
return strstr(t->name, "soft_max") != 0;
}
// print the node info
printf("%s: t->name = %32s, t->op = %12s, [%5d, %5d, %5d, %5d]\n",
__func__, t->name, ggml_op_name(t->op), (int) t->ne[0], (int) t->ne[1], (int) t->ne[2], (int) t->ne[3]);
// this will copy the data to host memory (if needed)
static std::vector<float> t_data;
const bool is_host = ggml_backend_buffer_is_host(t->buffer);
if (!is_host || !ggml_is_contiguous(t)) {
t_data.resize(ggml_nelements(t));
ggml_backend_tensor_get(t, t_data.data(), 0, ggml_nbytes(t));
}
const float * data = is_host ? (const float *) t->data : t_data.data();
// print first row
for (int i = 0; i < t->ne[0]; i++) {
printf("%8.4f ", data[i]);
}
printf("\n");
return true;
}
int main(int argc, char ** argv) {
gpt_params params;
bool observe = false;
if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH [PROMPT] [OBSERV]\n" , argv[0]);
return 1 ;
}
if (argc >= 2) {
params.model = argv[1];
}
if (argc >= 3) {
params.prompt = argv[2];
}
if (argc >= 4) {
observe = atoi(argv[3]);
}
if (params.prompt.empty()) {
params.prompt = "Hello my name is";
}
// total length of the sequence including the prompt
const int n_len = 32;
// init LLM
llama_backend_init(params.numa);
// initialize the model
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = 99; // offload all layers to the GPU
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
// initialize the context
llama_context_params ctx_params = llama_context_default_params();
ctx_params.seed = 1234;
ctx_params.n_ctx = 2048;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
ctx_params.cb_eval = observe ? observe_compute : NULL;
ctx_params.cb_eval_user_data = NULL;
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
// tokenize the prompt
std::vector<llama_token> tokens_list;
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
const int n_ctx = llama_n_ctx(ctx);
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_kv_req);
// make sure the KV cache is big enough to hold all the prompt and generated tokens
if (n_kv_req > n_ctx) {
LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
LOG_TEE("%s: either reduce n_len or increase n_ctx\n", __func__);
return 1;
}
// print the prompt token-by-token
fprintf(stderr, "\n");
for (auto id : tokens_list) {
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
}
fflush(stderr);
// create a llama_batch with size 512
// we use this object to submit token data for decoding
llama_batch batch = llama_batch_init(512, 0, 1);
// evaluate the initial prompt
for (size_t i = 0; i < tokens_list.size(); i++) {
llama_batch_add(batch, tokens_list[i], i, { 0 }, false);
}
// llama_decode will output logits only for the last token of the prompt
batch.logits[batch.n_tokens - 1] = true;
if (llama_decode(ctx, batch) != 0) {
LOG_TEE("%s: llama_decode() failed\n", __func__);
return 1;
}
// main loop
int n_cur = batch.n_tokens;
int n_decode = 0;
const auto t_main_start = ggml_time_us();
while (n_cur <= n_len) {
// sample the next token
{
auto n_vocab = llama_n_vocab(model);
auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// sample the most likely token
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of stream?
if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
LOG_TEE("\n");
break;
}
LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
fflush(stdout);
// prepare the next batch
llama_batch_clear(batch);
// push this new token for next evaluation
llama_batch_add(batch, new_token_id, n_cur, { 0 }, true);
n_decode += 1;
}
n_cur += 1;
// evaluate the current batch with the transformer model
if (llama_decode(ctx, batch)) {
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
return 1;
}
}
LOG_TEE("\n");
const auto t_main_end = ggml_time_us();
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
llama_print_timings(ctx);
fprintf(stderr, "\n");
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;
}