1
0
mirror of https://github.com/ggerganov/llama.cpp.git synced 2025-01-24 10:29:21 +01:00
llama.cpp/examples/llava
Georgi Gerganov afa8a9ec9b
llama : add llama_vocab, functions -> methods, naming ()
* llama : functions -> methods ()

* llama : add struct llama_vocab to the API ()

ggml-ci

* hparams : move vocab params to llama_vocab ()

ggml-ci

* vocab : more pimpl ()

ggml-ci

* vocab : minor tokenization optimizations ()

ggml-ci

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* lora : update API names ()

ggml-ci

* llama : update API names to use correct prefix ()

* llama : update API names to use correct prefix

ggml-ci

* cont

ggml-ci

* cont

ggml-ci

* minor [no ci]

* vocab : llama_vocab_add_[be]os -> llama_vocab_get_add_[be]os ()

ggml-ci

* vocab : llama_vocab_n_vocab -> llama_vocab_n_tokens ()

ggml-ci

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-01-12 11:32:42 +02:00
..
android build: rename main → llama-cli, server → llama-server, llava-cli → llama-llava-cli, etc... () 2024-06-13 00:41:52 +01:00
clip.cpp GGUF: C++ refactor, backend support, misc fixes () 2025-01-07 18:01:58 +01:00
clip.h llama : add Qwen2VL support + multimodal RoPE () 2024-12-14 14:43:46 +02:00
CMakeLists.txt llama : add Qwen2VL support + multimodal RoPE () 2024-12-14 14:43:46 +02:00
convert_image_encoder_to_gguf.py ci : reduce severity of unused Pyright ignore comments () 2024-09-30 14:13:16 -04:00
llava_surgery_v2.py py : type-check all Python scripts with Pyright () 2024-07-07 15:04:39 -04:00
llava_surgery.py py : switch to snake_case () 2024-07-05 07:53:33 +03:00
llava-cli.cpp llama : add llama_vocab, functions -> methods, naming () 2025-01-12 11:32:42 +02:00
llava.cpp llama : add llama_vocab, functions -> methods, naming () 2025-01-12 11:32:42 +02:00
llava.h llava : support MiniCPM-V-2.5 () 2024-08-09 13:33:53 +03:00
minicpmv-cli.cpp llama : add llama_vocab, functions -> methods, naming () 2025-01-12 11:32:42 +02:00
minicpmv-convert-image-encoder-to-gguf.py llava : support MiniCPM-V-2.6 () 2024-08-16 16:34:41 +03:00
minicpmv-surgery.py llava : support MiniCPM-V-2.6 () 2024-08-16 16:34:41 +03:00
MobileVLM-README.md llava : fix the script error in MobileVLM README () 2024-09-12 14:34:22 +03:00
qwen2_vl_surgery.py llava : Allow locally downloaded models for QwenVL () 2024-12-15 21:43:25 +01:00
qwen2vl-cli.cpp llama : add llama_vocab, functions -> methods, naming () 2025-01-12 11:32:42 +02:00
README-minicpmv2.5.md Fix minicpm example directory () 2024-08-27 14:33:08 +02:00
README-minicpmv2.6.md llava : support MiniCPM-V-2.6 () 2024-08-16 16:34:41 +03:00
README.md py : switch to snake_case () 2024-07-05 07:53:33 +03:00
requirements.txt py : fix requirements check '==' -> '~=' () 2024-08-12 11:02:01 +03:00

LLaVA

Currently this implementation supports llava-v1.5 variants, as well as llava-1.6 llava-v1.6 variants.

The pre-converted 7b and 13b models are available. For llava-1.6 a variety of prepared gguf models are available as well 7b-34b

After API is confirmed, more models will be supported / uploaded.

Usage

Build with cmake or run make llama-llava-cli to build it.

After building, run: ./llama-llava-cli to see the usage. For example:

./llama-llava-cli -m ../llava-v1.5-7b/ggml-model-f16.gguf --mmproj ../llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg

note: A lower temperature like 0.1 is recommended for better quality. add --temp 0.1 to the command to do so. note: For GPU offloading ensure to use the -ngl flag just like usual

LLaVA 1.5

  1. Clone a LLaVA and a CLIP model (available options). For example:
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b

git clone https://huggingface.co/openai/clip-vit-large-patch14-336
  1. Install the required Python packages:
pip install -r examples/llava/requirements.txt
  1. Use llava_surgery.py to split the LLaVA model to LLaMA and multimodel projector constituents:
python ./examples/llava/llava_surgery.py -m ../llava-v1.5-7b
  1. Use convert_image_encoder_to_gguf.py to convert the LLaVA image encoder to GGUF:
python ./examples/llava/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
  1. Use examples/convert_legacy_llama.py to convert the LLaMA part of LLaVA to GGUF:
python ./examples/convert_legacy_llama.py ../llava-v1.5-7b --skip-unknown

Now both the LLaMA part and the image encoder are in the llava-v1.5-7b directory.

LLaVA 1.6 gguf conversion

  1. First clone a LLaVA 1.6 model:
git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
  1. Install the required Python packages:
pip install -r examples/llava/requirements.txt
  1. Use llava_surgery_v2.py which also supports llava-1.5 variants pytorch as well as safetensor models:
python examples/llava/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/
  • you will find a llava.projector and a llava.clip file in your model directory
  1. Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
mkdir vit
cp ../llava-v1.6-vicuna-7b/llava.clip vit/pytorch_model.bin
cp ../llava-v1.6-vicuna-7b/llava.projector vit/
curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json
  1. Create the visual gguf model:
python ./examples/llava/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
  • This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
  1. Then convert the model to gguf format:
python ./examples/convert_legacy_llama.py ../llava-v1.6-vicuna-7b/ --skip-unknown
  1. And finally we can run the llava cli using the 1.6 model version:
./llama-llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096

note llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096) note llava-1.6 greatly benefits from batched prompt processing (defaults work)

llava-cli templating and llava-1.6 prompting

llava-1.5 models all use the same vicuna prompt, here you can just add your image question like -p "Provide a full description." For llava-1.5 models which are not vicuna (mistral and Yi) you need to adapt system prompt as well as user prompt, for this purpose llava-cli has a basic templating system:

For Mistral and using llava-cli binary: Add this: -p "<image>\nUSER:\nProvide a full description.\nASSISTANT:\n" The mistral template for llava-1.6 seems to be no system print and a USER/ASSISTANT role

For the 34B this should work: Add this: -e -p <|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nProvide a full description.<|im_end|><|im_start|>assistant\n

How to know if you are running in llava-1.5 or llava-1.6 mode

When running llava-cli you will see a visual information right before the prompt is being processed:

Llava-1.5: encode_image_with_clip: image embedding created: 576 tokens

Llava-1.6 (anything above 576): encode_image_with_clip: image embedding created: 2880 tokens

Alternatively just pay notice to how many "tokens" have been used for your prompt, it will also show 1000+ tokens for llava-1.6

TODO

  • Support non-CPU backend for the image encoding part.
  • Support different sampling methods.
  • Support more model variants.