mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 13:58:46 +01:00
cfa0750bc9
* add interface for float input * fixed inpL shape and type * add examples of input floats * add test example for embd input * fixed sampling * add free for context * fixed add end condition for generating * add examples for llava.py * add READMD for llava.py * add READMD for llava.py * add example of PandaGPT * refactor the interface and fixed the styles * add cmake build for embd-input * add cmake build for embd-input * Add MiniGPT-4 example * change the order of the args of llama_eval_internal * fix ci error
64 lines
2.2 KiB
Markdown
64 lines
2.2 KiB
Markdown
### Examples for input embedding directly
|
|
|
|
## Requirement
|
|
build `libembdinput.so`
|
|
run the following comman in main dir (../../).
|
|
```
|
|
make
|
|
```
|
|
|
|
## [LLaVA](https://github.com/haotian-liu/LLaVA/) example (llava.py)
|
|
|
|
1. Obtian LLaVA model (following https://github.com/haotian-liu/LLaVA/ , use https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/).
|
|
2. Convert it to ggml format.
|
|
3. `llava_projection.pth` is [pytorch_model-00003-of-00003.bin](https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/blob/main/pytorch_model-00003-of-00003.bin).
|
|
|
|
```
|
|
import torch
|
|
|
|
bin_path = "../LLaVA-13b-delta-v1-1/pytorch_model-00003-of-00003.bin"
|
|
pth_path = "./examples/embd_input/llava_projection.pth"
|
|
|
|
dic = torch.load(bin_path)
|
|
used_key = ["model.mm_projector.weight","model.mm_projector.bias"]
|
|
torch.save({k: dic[k] for k in used_key}, pth_path)
|
|
```
|
|
4. Check the path of LLaVA model and `llava_projection.pth` in `llava.py`.
|
|
|
|
|
|
## [PandaGPT](https://github.com/yxuansu/PandaGPT) example (panda_gpt.py)
|
|
|
|
1. Obtian PandaGPT lora model from https://github.com/yxuansu/PandaGPT. Rename the file to `adapter_model.bin`. Use [convert-lora-to-ggml.py](../../convert-lora-to-ggml.py) to convert it to ggml format.
|
|
The `adapter_config.json` is
|
|
```
|
|
{
|
|
"peft_type": "LORA",
|
|
"fan_in_fan_out": false,
|
|
"bias": null,
|
|
"modules_to_save": null,
|
|
"r": 32,
|
|
"lora_alpha": 32,
|
|
"lora_dropout": 0.1,
|
|
"target_modules": ["q_proj", "k_proj", "v_proj", "o_proj"]
|
|
}
|
|
```
|
|
2. Papare the `vicuna` v0 model.
|
|
3. Obtain the [ImageBind](https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth) model.
|
|
4. Clone the PandaGPT source.
|
|
```
|
|
git clone https://github.com/yxuansu/PandaGPT
|
|
```
|
|
5. Install the requirement of PandaGPT.
|
|
6. Check the path of PandaGPT source, ImageBind model, lora model and vicuna model in panda_gpt.py.
|
|
|
|
## [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4/) example (minigpt4.py)
|
|
|
|
1. Obtain MiniGPT-4 model from https://github.com/Vision-CAIR/MiniGPT-4/ and put it in `embd-input`.
|
|
2. Clone the MiniGPT-4 source.
|
|
```
|
|
git clone https://github.com/Vision-CAIR/MiniGPT-4/
|
|
```
|
|
3. Install the requirement of PandaGPT.
|
|
4. Papare the `vicuna` v0 model.
|
|
5. Check the path of MiniGPT-4 source, MiniGPT-4 model and vicuna model in `minigpt4.py`.
|