mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-04 01:57:53 +01:00
424c5d00a9
* CUDA eval works * stochastic gradient descent op * Adam except decay * CUDA CROSS_ENTROPY_LOSS_BACK * CUDA mnist-fc training works * backend CLI arg * refactor gguf load * remove sched from opt_step_adam * implement l1 regularization (weight decay) * extra call to add optimizer * initialize gradients with ggml_graph_reset * gradient accumulation * increment iter per eval instead of epoch * adjust backend interfaces * fix ggml_graph_reset without backend * fix ggml graph export/import * fixup * rename * revert ggml_opt changes * more general CUDA repeat_back * update documentation, fix CNN * validation split * add clarifying comment * optimize PyTorch training * adjust buffer size, thread count * fix 0.0f validation split * Update examples/mnist/mnist-common.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * fix gradient accumulation * tensor flag for accumulators -> tensor hash set * Update include/ggml.h Co-authored-by: slaren <slarengh@gmail.com> * Update tests/test-backend-ops.cpp Co-authored-by: slaren <slarengh@gmail.com> * Update tests/test-backend-ops.cpp Co-authored-by: slaren <slarengh@gmail.com> * fix test prints * Update src/ggml-backend.c Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * better CUDA support for noncontiguous out_prod * add comment --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
167 lines
5.6 KiB
Plaintext
167 lines
5.6 KiB
Plaintext
#include "common.cuh"
|
|
#include "cross-entropy-loss.cuh"
|
|
#include "sum.cuh"
|
|
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
|
|
static __global__ void cross_entropy_loss_f32(const float * logits, const float * labels, float * dst, const int nclasses, const int k) {
|
|
const int warp_id = threadIdx.x / WARP_SIZE;
|
|
const int lane_id = threadIdx.x % WARP_SIZE;
|
|
const int i0 = blockDim.x*blockIdx.x + warp_id*WARP_SIZE;
|
|
|
|
const int ne_tmp = WARP_SIZE*nclasses;
|
|
|
|
extern __shared__ float tmp_all[];
|
|
float * tmp_logits = tmp_all + (2*warp_id + 0)*ne_tmp;
|
|
float * tmp_labels = tmp_all + (2*warp_id + 1)*ne_tmp;
|
|
|
|
// Each warp first loads ne_tmp logits/labels into shared memory:
|
|
for (int i = lane_id; i < ne_tmp; i += WARP_SIZE) {
|
|
const int ig = i0*nclasses + i; // ig == i global
|
|
|
|
tmp_logits[i] = ig < k*nclasses ? logits[ig] : 0.0f;
|
|
tmp_labels[i] = ig < k*nclasses ? labels[ig] : 0.0f;
|
|
}
|
|
|
|
// Each thread in the warp then calculates the cross entropy loss for a single row.
|
|
// TODO: pad in order to avoid shared memory bank conflicts.
|
|
|
|
// Find maximum for softmax:
|
|
float max = -INFINITY;
|
|
for (int i = 0; i < nclasses; ++i) {
|
|
max = fmaxf(max, tmp_logits[lane_id*nclasses + i]);
|
|
}
|
|
|
|
// Calculate log(softmax(logits)) which is just logits - max:
|
|
float sum = 0.0f;
|
|
for (int i = 0; i < nclasses; ++i) {
|
|
float val = tmp_logits[lane_id*nclasses + i] - max;
|
|
sum += expf(val);
|
|
tmp_logits[lane_id*nclasses + i] = val;
|
|
}
|
|
sum = logf(sum);
|
|
|
|
// log(exp(logits - max) / sum) = (logits - max) - log(sum)
|
|
float loss = 0.0f;
|
|
for (int i = 0; i < nclasses; ++i) {
|
|
loss += (tmp_logits[lane_id*nclasses + i] - sum) * tmp_labels[lane_id*nclasses + i];
|
|
}
|
|
loss = -warp_reduce_sum(loss) / (float)k;
|
|
|
|
__syncthreads();
|
|
|
|
if (lane_id == 0) {
|
|
tmp_all[warp_id] = loss;
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
if (warp_id != 0) {
|
|
return;
|
|
}
|
|
|
|
loss = lane_id < CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE/WARP_SIZE ? tmp_all[lane_id] : 0.0f;
|
|
loss = warp_reduce_sum(loss);
|
|
|
|
if (lane_id != 0) {
|
|
return;
|
|
}
|
|
|
|
dst[blockIdx.x] = loss;
|
|
}
|
|
|
|
static __global__ void cross_entropy_loss_back_f32(const float * logits, const float * labels, const float * loss, float * dst, const int nclasses) {
|
|
extern __shared__ float tmp[];
|
|
|
|
float maxval = -INFINITY;
|
|
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
|
|
const float val = logits[blockIdx.x*nclasses + i];
|
|
maxval = fmaxf(maxval, val);
|
|
tmp[i] = val;
|
|
}
|
|
maxval = warp_reduce_max(maxval);
|
|
|
|
float sum = 0.0f;
|
|
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
|
|
const float val = expf(tmp[i] - maxval);
|
|
sum += val;
|
|
tmp[i] = val;
|
|
}
|
|
sum = warp_reduce_sum(sum);
|
|
const float sm_scale = 1.0f/sum;
|
|
|
|
const float d_by_nrows = *loss/gridDim.x;
|
|
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
|
|
dst[blockIdx.x*nclasses + i] = (tmp[i]*sm_scale - labels[blockIdx.x*nclasses + i])*d_by_nrows;
|
|
}
|
|
}
|
|
|
|
void ggml_cuda_cross_entropy_loss(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
GGML_ASSERT(ggml_is_contiguous(src1));
|
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
|
|
const float * src0_d = (const float *) src0->data;
|
|
const float * src1_d = (const float *) src1->data;
|
|
float * dst_d = (float *) dst->data;
|
|
|
|
ggml_cuda_pool & pool = ctx.pool();
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
const dim3 blocks_dim(CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE, 1, 1);
|
|
const dim3 blocks_num((nrows + CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE - 1) / CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE, 1, 1);
|
|
const int shmem = 2*CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE*ne00*sizeof(float);
|
|
|
|
ggml_cuda_pool_alloc<float> dst_tmp(pool, blocks_num.x);
|
|
|
|
cross_entropy_loss_f32<<<blocks_num, blocks_dim, shmem, stream>>>(src0_d, src1_d, dst_tmp.ptr, ne00, nrows);
|
|
|
|
// Combine results from individual blocks:
|
|
sum_f32_cuda(pool, dst_tmp.ptr, dst_d, blocks_num.x, stream);
|
|
}
|
|
|
|
void ggml_cuda_cross_entropy_loss_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
const ggml_tensor * opt0 = dst->src[2];
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(opt0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
GGML_ASSERT(ggml_is_contiguous(src1));
|
|
GGML_ASSERT(ggml_is_contiguous(opt0));
|
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
|
GGML_ASSERT(ggml_are_same_shape(src0, src1));
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
|
|
const float * src0_d = (const float *) src0->data;
|
|
const float * src1_d = (const float *) src1->data;
|
|
const float * opt0_d = (const float *) opt0->data;
|
|
float * dst_d = (float *) dst->data;
|
|
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
const dim3 blocks_dim(WARP_SIZE, 1, 1);
|
|
const dim3 blocks_num(nrows, 1, 1);
|
|
const int shmem = ne00*sizeof(float);
|
|
|
|
cross_entropy_loss_back_f32<<<blocks_num, blocks_dim, shmem, stream>>>(src0_d, src1_d, opt0_d, dst_d, ne00);
|
|
}
|