mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-25 19:08:44 +01:00
28103f4832
* Server: add tests for consistent results * sampling: separate rng per sampling context
160 lines
5.6 KiB
C++
160 lines
5.6 KiB
C++
#include "ggml.h"
|
|
#include "common.h"
|
|
#include "llama.h"
|
|
#include "log.h"
|
|
#include "ngram-cache.h"
|
|
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <cstdio>
|
|
#include <fstream>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <unordered_map>
|
|
|
|
int main(int argc, char ** argv){
|
|
gpt_params params;
|
|
|
|
if (!gpt_params_parse(argc, argv, params)) {
|
|
return 1;
|
|
}
|
|
|
|
const int n_draft = params.n_draft;
|
|
|
|
// init llama.cpp
|
|
llama_backend_init();
|
|
llama_numa_init(params.numa);
|
|
|
|
llama_model * model = NULL;
|
|
llama_context * ctx = NULL;
|
|
|
|
// load the model
|
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
|
GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
|
|
|
|
// tokenize the prompt
|
|
std::vector<llama_token> inp;
|
|
inp = ::llama_tokenize(ctx, params.prompt, true, true);
|
|
|
|
llama_ngram_cache ngram_cache_context;
|
|
llama_ngram_cache ngram_cache_dynamic;
|
|
llama_ngram_cache ngram_cache_static;
|
|
int64_t t_draft_flat_us = 0;
|
|
int64_t t_draft_us = 0;
|
|
|
|
{
|
|
const int64_t t_start_draft_us = ggml_time_us();
|
|
|
|
if (!params.lookup_cache_static.empty()) {
|
|
try {
|
|
ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
|
|
} catch (std::ifstream::failure const &) {
|
|
fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
if (!params.lookup_cache_dynamic.empty()) {
|
|
try {
|
|
ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic);
|
|
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
|
|
}
|
|
|
|
t_draft_flat_us += ggml_time_us() - t_start_draft_us;
|
|
}
|
|
|
|
const int n_input = inp.size();
|
|
const int n_ctx = params.n_ctx;
|
|
|
|
int n_drafted = 0;
|
|
int n_accept = 0;
|
|
|
|
const int64_t t_start_ms = ggml_time_ms();
|
|
|
|
// Iterate over input tokens in chunks of size n_ctx.
|
|
// Each chunk is treated as if a sequential generation but with pre-determined tokens to ensure reproducibility.
|
|
for (int i_start = 0; i_start + n_ctx < n_input; i_start += n_ctx) {
|
|
const std::vector<llama_token> inp_slice(inp.begin() + i_start, inp.begin() + i_start + n_ctx);
|
|
std::vector<llama_token> pseudo_output;
|
|
pseudo_output.push_back(inp_slice[0]);
|
|
|
|
while ((int) pseudo_output.size() < n_ctx) {
|
|
// Simulate drafting and decoding from draft:
|
|
std::vector<llama_token> draft;
|
|
draft.push_back(pseudo_output.back());
|
|
|
|
{
|
|
const int64_t t_start_draft_us = ggml_time_us();
|
|
llama_ngram_cache_draft(pseudo_output, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
|
|
t_draft_us += ggml_time_us() - t_start_draft_us;
|
|
}
|
|
|
|
n_drafted += draft.size() - 1;
|
|
|
|
for (size_t j = 1; j < draft.size() && (int) pseudo_output.size() < n_ctx; ++j) {
|
|
const llama_token ground_truth = inp_slice[pseudo_output.size()];
|
|
const llama_token drafted = draft[j];
|
|
|
|
if (ground_truth != drafted) {
|
|
break;
|
|
}
|
|
|
|
++n_accept;
|
|
pseudo_output.push_back(ground_truth);
|
|
|
|
{
|
|
const int64_t t_start_draft_us = ggml_time_us();
|
|
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
|
|
t_draft_us += ggml_time_us() - t_start_draft_us;
|
|
}
|
|
}
|
|
|
|
// After each simulated batch decoding simulate the sampling of a single token:
|
|
if ((int) pseudo_output.size() < n_ctx) {
|
|
pseudo_output.push_back(inp_slice[pseudo_output.size()]);
|
|
{
|
|
const int64_t t_start_draft_us = ggml_time_us();
|
|
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
|
|
t_draft_us += ggml_time_us() - t_start_draft_us;
|
|
}
|
|
}
|
|
|
|
draft.erase(draft.begin());
|
|
|
|
}
|
|
if (i_start > 0 && i_start / 100000 != (i_start - n_ctx) / 100000) {
|
|
const int64_t t_now_ms = ggml_time_ms();
|
|
const int64_t eta_ms = (n_input - i_start) * (t_now_ms - t_start_ms) / i_start;
|
|
const int64_t eta_min = eta_ms / (60*1000);
|
|
const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000;
|
|
|
|
LOG_TEE("lookup-stats: %d/%d done, ETA: %02" PRId64 ":%02" PRId64 "\n", i_start, n_input, eta_min, eta_s);
|
|
}
|
|
|
|
// After each chunk, update the dynamic ngram cache with the context ngram cache:
|
|
llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
|
|
ngram_cache_context.clear();
|
|
}
|
|
|
|
LOG_TEE("\n");
|
|
|
|
LOG_TEE("\n");
|
|
LOG_TEE("n_draft = %d\n", n_draft);
|
|
LOG_TEE("n_predict = %d\n", n_input - n_input % n_ctx);
|
|
LOG_TEE("n_drafted = %d\n", n_drafted);
|
|
LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
|
|
LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
|
|
t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
|
|
LOG_TEE("n_accept = %d\n", n_accept);
|
|
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
|
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
|
|
llama_backend_free();
|
|
|
|
fprintf(stderr, "\n\n");
|
|
|
|
return 0;
|
|
}
|