1
0
mirror of https://github.com/ggerganov/llama.cpp.git synced 2025-01-21 17:19:23 +01:00
llama.cpp/examples/eval-callback/README.md
Olivier Chafik 1c641e6aac
build: rename main → llama-cli, server → llama-server, llava-cli → llama-llava-cli, etc... ()
* `main`/`server`: rename to `llama` / `llama-server` for consistency w/ homebrew

* server: update refs -> llama-server

gitignore llama-server

* server: simplify nix package

* main: update refs -> llama

fix examples/main ref

* main/server: fix targets

* update more names

* Update build.yml

* rm accidentally checked in bins

* update straggling refs

* Update .gitignore

* Update server-llm.sh

* main: target name -> llama-cli

* Prefix all example bins w/ llama-

* fix main refs

* rename {main->llama}-cmake-pkg binary

* prefix more cmake targets w/ llama-

* add/fix gbnf-validator subfolder to cmake

* sort cmake example subdirs

* rm bin files

* fix llama-lookup-* Makefile rules

* gitignore /llama-*

* rename Dockerfiles

* rename llama|main -> llama-cli; consistent RPM bin prefixes

* fix some missing -cli suffixes

* rename dockerfile w/ llama-cli

* rename(make): llama-baby-llama

* update dockerfile refs

* more llama-cli(.exe)

* fix test-eval-callback

* rename: llama-cli-cmake-pkg(.exe)

* address gbnf-validator unused fread warning (switched to C++ / ifstream)

* add two missing llama- prefixes

* Updating docs for eval-callback binary to use new `llama-` prefix.

* Updating a few lingering doc references for rename of main to llama-cli

* Updating `run-with-preset.py` to use new binary names.
Updating docs around `perplexity` binary rename.

* Updating documentation references for lookup-merge and export-lora

* Updating two small `main` references missed earlier in the finetune docs.

* Update apps.nix

* update grammar/README.md w/ new llama-* names

* update llama-rpc-server bin name + doc

* Revert "update llama-rpc-server bin name + doc"

This reverts commit e474ef1df4.

* add hot topic notice to README.md

* Update README.md

* Update README.md

* rename gguf-split & quantize bins refs in **/tests.sh

---------

Co-authored-by: HanClinto <hanclinto@gmail.com>
2024-06-13 00:41:52 +01:00

4.6 KiB

llama.cpp/examples/eval-callback

A simple example which demonstrates how to use callback during the inference. It simply prints to the console all operations and tensor data.

Usage:

llama-eval-callback \
  --hf-repo ggml-org/models \
  --hf-file phi-2/ggml-model-q4_0.gguf \
  --model phi-2-q4_0.gguf \
  --prompt hello \
  --seed 42 \
  -ngl 33

Will print:

llm_load_tensors: offloaded 33/33 layers to GPU
...
llama_new_context_with_model: n_ctx      = 512
...
llama_new_context_with_model:      CUDA0 compute buffer size =   105.00 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =     6.01 MiB
llama_new_context_with_model: graph nodes  = 1225
llama_new_context_with_model: graph splits = 2
ggml_debug:                 inp_embd = (f32)   GET_ROWS(token_embd.weight{2560, 51200, 1, 1}, inp_tokens{1, 1, 1, 1}}) = {2560, 1, 1, 1}
                                     [
                                      [
                                       [ -0.0181,   0.0272,   0.0272, ...],
                                      ],
                                     ]
ggml_debug:                   norm-0 = (f32)       NORM(CUDA0#inp_embd#0{2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
                                     [
                                      [
                                       [ -0.6989,   1.0636,   1.0636, ...],
                                      ],
                                     ]
ggml_debug:                 norm_w-0 = (f32)        MUL(norm-0{2560, 1, 1, 1}, blk.0.attn_norm.weight{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
                                     [
                                      [
                                       [ -0.1800,   0.2817,   0.2632, ...],
                                      ],
                                     ]
ggml_debug:              attn_norm-0 = (f32)        ADD(norm_w-0{2560, 1, 1, 1}, blk.0.attn_norm.bias{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
                                     [
                                      [
                                       [ -0.1863,   0.2970,   0.2604, ...],
                                      ],
                                     ]
ggml_debug:                   wqkv-0 = (f32)    MUL_MAT(blk.0.attn_qkv.weight{2560, 7680, 1, 1}, attn_norm-0{2560, 1, 1, 1}}) = {7680, 1, 1, 1}
                                     [
                                      [
                                       [ -1.1238,   1.2876,  -1.8086, ...],
                                      ],
                                     ]
ggml_debug:                   bqkv-0 = (f32)        ADD(wqkv-0{7680, 1, 1, 1}, blk.0.attn_qkv.bias{7680, 1, 1, 1}}) = {7680, 1, 1, 1}
                                     [
                                      [
                                       [ -1.1135,   1.4604,  -1.9226, ...],
                                      ],
                                     ]
ggml_debug:            bqkv-0 (view) = (f32)       VIEW(bqkv-0{7680, 1, 1, 1}, }) = {2560, 1, 1, 1}
                                     [
                                      [
                                       [ -1.1135,   1.4604,  -1.9226, ...],
                                      ],
                                     ]
ggml_debug:                   Qcur-0 = (f32)       CONT(bqkv-0 (view){2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
                                     [
                                      [
                                       [ -1.1135,   1.4604,  -1.9226, ...],
                                      ],
                                     ]
ggml_debug:        Qcur-0 (reshaped) = (f32)    RESHAPE(Qcur-0{2560, 1, 1, 1}, }) = {80, 32, 1, 1}
                                     [
                                      [
                                       [ -1.1135,   1.4604,  -1.9226, ...],
                                       [ -0.3608,   0.5076,  -1.8866, ...],
                                       [  1.7643,   0.0273,  -2.1065, ...],
                                       ...
                                      ],
                                     ]
ggml_debug:                   Qcur-0 = (f32)       ROPE(Qcur-0 (reshaped){80, 32, 1, 1}, CUDA0#inp_pos#0{1, 1, 1, 1}}) = {80, 32, 1, 1}
                                     [
                                      [
                                       [ -1.1135,   1.4604,  -1.9226, ...],
                                       [ -0.3608,   0.5076,  -1.8866, ...],
                                       [  1.7643,   0.0273,  -2.1065, ...],
                                       ...
                                      ],
                                     ]