Port of Facebook's LLaMA model in C/C++
Go to file
2024-02-13 15:11:23 +02:00
.devops add Vulkan support to Nix flake 2024-02-03 13:13:07 -06:00
.github llava : remove prog parameter from ArgumentParser (#5457) 2024-02-12 10:38:44 +02:00
awq-py awq-py : fix typo in awq-py/README.md (#4947) 2024-01-15 14:41:46 +02:00
ci bert : add tests + fix quantization (#5475) 2024-02-13 13:01:29 +02:00
cmake cmake : MSVC instruction detection (fixed up #809) (#3923) 2023-11-05 10:03:09 +02:00
common common : use enums for sampler types (#5418) 2024-02-11 15:43:31 +02:00
docs docs : add llama-star arch idea 2023-11-23 11:35:04 +02:00
examples iq1_s: CUDA is working 2024-02-13 13:17:46 +02:00
gguf-py Add support for BERT embedding models (#5423) 2024-02-11 11:21:38 -05:00
grammars Fix some documentation typos/grammar mistakes (#4032) 2023-11-11 23:04:58 -07:00
kompute@4565194ed7 Nomic Vulkan backend (#4456) 2024-01-29 15:50:50 -05:00
kompute-shaders Nomic Vulkan backend (#4456) 2024-01-29 15:50:50 -05:00
media media : add logos and banners 2023-04-05 18:58:31 +03:00
models gpt2 : Add gpt2 architecture integration (#4555) 2023-12-28 15:03:57 +01:00
pocs ggml : add mmla kernels for quantized GEMM (#4966) 2024-02-11 15:22:33 +02:00
prompts llama : add Qwen support (#4281) 2023-12-01 20:16:31 +02:00
requirements python : add check-requirements.sh and GitHub workflow (#4585) 2023-12-29 16:50:29 +02:00
scripts sync : ggml (#5452) 2024-02-12 09:16:06 +02:00
spm-headers swift : package no longer use ggml dependency (#5465) 2024-02-12 19:54:29 +02:00
tests iq1_s: Tests 2024-02-13 15:11:23 +02:00
.clang-tidy fix some warnings from gcc and clang-tidy (#3038) 2023-09-07 13:22:29 -04:00
.dockerignore docker : ignore Git files (#3314) 2023-10-02 11:53:53 +03:00
.ecrc Nomic Vulkan backend (#4456) 2024-01-29 15:50:50 -05:00
.editorconfig llama.swiftui : add bench functionality (#4483) 2023-12-17 19:38:41 +02:00
.flake8 Add support for BERT embedding models (#5423) 2024-02-11 11:21:38 -05:00
.gitignore support SYCL backend windows build (#5208) 2024-01-31 08:08:07 +05:30
.gitmodules Nomic Vulkan backend (#4456) 2024-01-29 15:50:50 -05:00
.pre-commit-config.yaml hooks : setting up flake8 and pre-commit hooks (#1681) 2023-06-17 13:32:48 +03:00
build.zig build : link against build info instead of compiling against it (#3879) 2023-11-02 08:50:16 +02:00
CMakeLists.txt CMAKE_OSX_ARCHITECTURES for MacOS cross compilation (#5393) 2024-02-07 16:39:23 -05:00
codecov.yml cov : disable comment in PRs (#2989) 2023-09-03 13:19:01 +03:00
convert-hf-to-gguf.py Add support for BERT embedding models (#5423) 2024-02-11 11:21:38 -05:00
convert-llama-ggml-to-gguf.py convert : partially revert PR #4818 (#5041) 2024-01-20 18:14:18 -05:00
convert-lora-to-ggml.py add safetensors support to convert-lora-to-ggml.py (#5062) 2024-01-21 17:28:14 +01:00
convert-persimmon-to-gguf.py py : fix persimmon n_rot conversion (#5460) 2024-02-12 19:29:57 +02:00
convert.py convert : fix TypeError on GPT-2 vocab.json (#5288) 2024-02-06 23:28:00 -05:00
flake.lock flake.lock: Update 2024-02-11 07:50:41 -08:00
flake.nix add Vulkan support to Nix flake 2024-02-03 13:13:07 -06:00
ggml_vk_generate_shaders.py vulkan: Set limit for task concurrency (#5427) 2024-02-09 19:30:19 +01:00
ggml-alloc.c sync : ggml (#5452) 2024-02-12 09:16:06 +02:00
ggml-alloc.h sync : ggml (#5452) 2024-02-12 09:16:06 +02:00
ggml-backend-impl.h ggml : add Vulkan backend (#2059) 2024-01-28 19:03:59 +02:00
ggml-backend.c iq1_s: Tests 2024-02-13 15:11:23 +02:00
ggml-backend.h sync : ggml (#5452) 2024-02-12 09:16:06 +02:00
ggml-cuda.cu iq1_s: better grid 2024-02-13 13:17:48 +02:00
ggml-cuda.h ggml : introduce GGML_CALL function annotation (#4850) 2024-01-16 13:16:33 +02:00
ggml-impl.h ggml : make use of ggml-quants.h possible in C++ code (#5338) 2024-02-05 14:09:47 +02:00
ggml-kompute.cpp Nomic Vulkan backend (#4456) 2024-01-29 15:50:50 -05:00
ggml-kompute.h Nomic Vulkan backend (#4456) 2024-01-29 15:50:50 -05:00
ggml-metal.h metal : add debug capture backend function (ggml/694) 2024-01-30 16:20:25 +02:00
ggml-metal.m iq1_s: Tests 2024-02-13 15:11:23 +02:00
ggml-metal.metal iq1_s: Metal works, but quite slow 2024-02-13 14:37:16 +02:00
ggml-mpi.c ggml : remove src0 and src1 from ggml_tensor and rename opt to src (#2178) 2023-07-11 19:31:10 +03:00
ggml-mpi.h mpi : add support for distributed inference via MPI (#2099) 2023-07-10 18:49:56 +03:00
ggml-opencl.cpp ggml : add max buffer sizes to opencl and metal backends (#5181) 2024-01-29 10:05:13 +02:00
ggml-opencl.h Add OpenCL add kernel (#5151) 2024-01-26 23:07:32 +01:00
ggml-quants.c iq1_s: better grid 2024-02-13 13:17:48 +02:00
ggml-quants.h iq1_s: scalar CPU dot product 2024-02-13 13:17:48 +02:00
ggml-sycl.cpp ggml-sycl: Replace 3d ops with macro (#5458) 2024-02-12 20:22:05 +05:30
ggml-sycl.h add --no-mmap in llama-bench (#5257) 2024-02-01 20:48:53 +01:00
ggml-vulkan-shaders.hpp Vulkan Intel Fixes, Optimizations and Debugging Flags (#5301) 2024-02-03 18:15:00 +01:00
ggml-vulkan.cpp vulkan: only use M-sized matmul on Apple GPUs (#5412) 2024-02-11 15:12:00 +01:00
ggml-vulkan.h Basic Vulkan Multi-GPU implementation (#5321) 2024-02-07 07:54:50 +01:00
ggml.c Fix after merge with latest master 2024-02-13 13:17:48 +02:00
ggml.h iq1_s: WIP basics 2024-02-13 13:16:52 +02:00
LICENSE Add LICENSE (#21) 2023-03-12 08:36:03 +02:00
llama.cpp iq1_s: use IQ2_XXS for attn_output 2024-02-13 13:17:48 +02:00
llama.h iq1_s: CUDA is working 2024-02-13 13:17:46 +02:00
Makefile make: Use ccache for faster compilation (#5318) 2024-02-05 19:33:00 +01:00
mypy.ini convert : partially revert PR #4818 (#5041) 2024-01-20 18:14:18 -05:00
Package.swift swift : package no longer use ggml dependency (#5465) 2024-02-12 19:54:29 +02:00
README-sycl.md [SYCL] update install make by w64devkit (#5297) 2024-02-07 18:16:55 +08:00
README.md readme : add JavaScript/Wasm repo (#5415) 2024-02-09 12:17:00 +02:00
requirements.txt python : add check-requirements.sh and GitHub workflow (#4585) 2023-12-29 16:50:29 +02:00
unicode.h add #include <string> to unicode.h (#5051) 2024-01-21 10:17:35 -05:00

llama.cpp

llama

License: MIT

Roadmap / Project status / Manifesto / ggml

Inference of Meta's LLaMA model (and others) in pure C/C++

Hot topics


Table of Contents
  1. Description
  2. Usage
  3. Contributing
  4. Coding guidelines
  5. Docs

Description

The main goal of llama.cpp is to enable LLM inference with minimal setup and state-of-the-art performance on a wide variety of hardware - locally and in the cloud.

  • Plain C/C++ implementation without any dependencies
  • Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
  • AVX, AVX2 and AVX512 support for x86 architectures
  • 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
  • Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP)
  • Vulkan, SYCL, and (partial) OpenCL backend support
  • CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity

Since its inception, the project has improved significantly thanks to many contributions. It is the main playground for developing new features for the ggml library.

Supported platforms:

  • Mac OS
  • Linux
  • Windows (via CMake)
  • Docker
  • FreeBSD

Supported models:

Typically finetunes of the base models below are supported as well.

Multimodal models:

Bindings:

UI:

Unless otherwise noted these projects are open-source with permissive licensing:


Here is a typical run using LLaMA v2 13B on M2 Ultra:

$ make -j && ./main -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e
I llama.cpp build info:
I UNAME_S:  Darwin
I UNAME_P:  arm
I UNAME_M:  arm64
I CFLAGS:   -I.            -O3 -std=c11   -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -pthread -DGGML_USE_K_QUANTS -DGGML_USE_ACCELERATE
I CXXFLAGS: -I. -I./common -O3 -std=c++11 -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar -pthread -DGGML_USE_K_QUANTS
I LDFLAGS:   -framework Accelerate
I CC:       Apple clang version 14.0.3 (clang-1403.0.22.14.1)
I CXX:      Apple clang version 14.0.3 (clang-1403.0.22.14.1)

make: Nothing to be done for `default'.
main: build = 1041 (cf658ad)
main: seed  = 1692823051
llama_model_loader: loaded meta data with 16 key-value pairs and 363 tensors from models/llama-13b-v2/ggml-model-q4_0.gguf (version GGUF V1 (latest))
llama_model_loader: - type  f32:   81 tensors
llama_model_loader: - type q4_0:  281 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_print_meta: format         = GGUF V1 (latest)
llm_load_print_meta: arch           = llama
llm_load_print_meta: vocab type     = SPM
llm_load_print_meta: n_vocab        = 32000
llm_load_print_meta: n_merges       = 0
llm_load_print_meta: n_ctx_train    = 4096
llm_load_print_meta: n_ctx          = 512
llm_load_print_meta: n_embd         = 5120
llm_load_print_meta: n_head         = 40
llm_load_print_meta: n_head_kv      = 40
llm_load_print_meta: n_layer        = 40
llm_load_print_meta: n_rot          = 128
llm_load_print_meta: n_gqa          = 1
llm_load_print_meta: f_norm_eps     = 1.0e-05
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: n_ff           = 13824
llm_load_print_meta: freq_base      = 10000.0
llm_load_print_meta: freq_scale     = 1
llm_load_print_meta: model type     = 13B
llm_load_print_meta: model ftype    = mostly Q4_0
llm_load_print_meta: model size     = 13.02 B
llm_load_print_meta: general.name   = LLaMA v2
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token  = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.11 MB
llm_load_tensors: mem required  = 7024.01 MB (+  400.00 MB per state)
...................................................................................................
llama_new_context_with_model: kv self size  =  400.00 MB
llama_new_context_with_model: compute buffer total size =   75.41 MB

system_info: n_threads = 16 / 24 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
sampling: repeat_last_n = 64, repeat_penalty = 1.100000, presence_penalty = 0.000000, frequency_penalty = 0.000000, top_k = 40, tfs_z = 1.000000, top_p = 0.950000, typical_p = 1.000000, temp = 0.800000, mirostat = 0, mirostat_lr = 0.100000, mirostat_ent = 5.000000
generate: n_ctx = 512, n_batch = 512, n_predict = 400, n_keep = 0


 Building a website can be done in 10 simple steps:
Step 1: Find the right website platform.
Step 2: Choose your domain name and hosting plan.
Step 3: Design your website layout.
Step 4: Write your website content and add images.
Step 5: Install security features to protect your site from hackers or spammers
Step 6: Test your website on multiple browsers, mobile devices, operating systems etc…
Step 7: Test it again with people who are not related to you personally  friends or family members will work just fine!
Step 8: Start marketing and promoting the website via social media channels or paid ads
Step 9: Analyze how many visitors have come to your site so far, what type of people visit more often than others (e.g., men vs women) etc…
Step 10: Continue to improve upon all aspects mentioned above by following trends in web design and staying up-to-date on new technologies that can enhance user experience even further!
How does a Website Work?
A website works by having pages, which are made of HTML code. This code tells your computer how to display the content on each page you visit  whether its an image or text file (like PDFs). In order for someone elses browser not only be able but also want those same results when accessing any given URL; some additional steps need taken by way of programming scripts that will add functionality such as making links clickable!
The most common type is called static HTML pages because they remain unchanged over time unless modified manually (either through editing files directly or using an interface such as WordPress). They are usually served up via HTTP protocols  this means anyone can access them without having any special privileges like being part of a group who is allowed into restricted areas online; however, there may still exist some limitations depending upon where one lives geographically speaking.
How to
llama_print_timings:        load time =   576.45 ms
llama_print_timings:      sample time =   283.10 ms /   400 runs   (    0.71 ms per token,  1412.91 tokens per second)
llama_print_timings: prompt eval time =   599.83 ms /    19 tokens (   31.57 ms per token,    31.68 tokens per second)
llama_print_timings:        eval time = 24513.59 ms /   399 runs   (   61.44 ms per token,    16.28 tokens per second)
llama_print_timings:       total time = 25431.49 ms

And here is another demo of running both LLaMA-7B and whisper.cpp on a single M1 Pro MacBook:

https://user-images.githubusercontent.com/1991296/224442907-7693d4be-acaa-4e01-8b4f-add84093ffff.mp4

Usage

Here are the end-to-end binary build and model conversion steps for most supported models.

Get the Code

git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp

Build

In order to build llama.cpp you have three different options.

  • Using make:

    • On Linux or MacOS:

      make
      
    • On Windows:

      1. Download the latest fortran version of w64devkit.
      2. Extract w64devkit on your pc.
      3. Run w64devkit.exe.
      4. Use the cd command to reach the llama.cpp folder.
      5. From here you can run:
        make
        
  • Using CMake:

    mkdir build
    cd build
    cmake ..
    cmake --build . --config Release
    
  • Using Zig (version 0.11 or later):

    Building for optimization levels and CPU features can be accomplished using standard build arguments, for example AVX2, FMA, F16C, it's also possible to cross compile for other operating systems and architectures:

    zig build -Doptimize=ReleaseFast -Dtarget=x86_64-windows-gnu -Dcpu=x86_64+avx2+fma+f16c
    

    The zig targets command will give you valid options to use.

  • Using gmake (FreeBSD):

    1. Install and activate DRM in FreeBSD

    2. Add your user to video group

    3. Install compilation dependencies.

      sudo pkg install gmake automake autoconf pkgconf llvm15 clinfo clover \
          opencl clblast openblas
      
      gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4
      

    Notes: With this packages you can build llama.cpp with OPENBLAS and CLBLAST support for use OpenCL GPU acceleration in FreeBSD. Please read the instructions for use and activate this options in this document below.

Metal Build

On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU. To disable the Metal build at compile time use the LLAMA_NO_METAL=1 flag or the LLAMA_METAL=OFF cmake option.

When built with Metal support, you can explicitly disable GPU inference with the --n-gpu-layers|-ngl 0 command-line argument.

MPI Build

MPI lets you distribute the computation over a cluster of machines. Because of the serial nature of LLM prediction, this won't yield any end-to-end speed-ups, but it will let you run larger models than would otherwise fit into RAM on a single machine.

First you will need MPI libraries installed on your system. The two most popular (only?) options are MPICH and OpenMPI. Either can be installed with a package manager (apt, Homebrew, MacPorts, etc).

Next you will need to build the project with LLAMA_MPI set to true on all machines; if you're building with make, you will also need to specify an MPI-capable compiler (when building with CMake, this is configured automatically):

  • Using make:

    make CC=mpicc CXX=mpicxx LLAMA_MPI=1
    
  • Using CMake:

    cmake -S . -B build -DLLAMA_MPI=ON
    

Once the programs are built, download/convert the weights on all of the machines in your cluster. The paths to the weights and programs should be identical on all machines.

Next, ensure password-less SSH access to each machine from the primary host, and create a hostfile with a list of the hostnames and their relative "weights" (slots). If you want to use localhost for computation, use its local subnet IP address rather than the loopback address or "localhost".

Here is an example hostfile:

192.168.0.1:2
malvolio.local:1

The above will distribute the computation across 2 processes on the first host and 1 process on the second host. Each process will use roughly an equal amount of RAM. Try to keep these numbers small, as inter-process (intra-host) communication is expensive.

Finally, you're ready to run a computation using mpirun:

mpirun -hostfile hostfile -n 3 ./main -m ./models/7B/ggml-model-q4_0.gguf -n 128

BLAS Build

Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS and CLBlast. There are currently several different BLAS implementations available for build and use:

  • Accelerate Framework:

    This is only available on Mac PCs and it's enabled by default. You can just build using the normal instructions.

  • OpenBLAS:

    This provides BLAS acceleration using only the CPU. Make sure to have OpenBLAS installed on your machine.

    • Using make:

      • On Linux:

        make LLAMA_OPENBLAS=1
        
      • On Windows:

        1. Download the latest fortran version of w64devkit.

        2. Download the latest version of OpenBLAS for Windows.

        3. Extract w64devkit on your pc.

        4. From the OpenBLAS zip that you just downloaded copy libopenblas.a, located inside the lib folder, inside w64devkit\x86_64-w64-mingw32\lib.

        5. From the same OpenBLAS zip copy the content of the include folder inside w64devkit\x86_64-w64-mingw32\include.

        6. Run w64devkit.exe.

        7. Use the cd command to reach the llama.cpp folder.

        8. From here you can run:

          make LLAMA_OPENBLAS=1
          
    • Using CMake on Linux:

      mkdir build
      cd build
      cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
      cmake --build . --config Release
      
  • BLIS

    Check BLIS.md for more information.

  • SYCL

    SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators.

    llama.cpp based on SYCL is used to support Intel GPU (Data Center Max series, Flex series, Arc series, Built-in GPU and iGPU).

    For detailed info, please refer to llama.cpp for SYCL.

  • Intel oneMKL

    Building through oneAPI compilers will make avx_vnni instruction set available for intel processors that do not support avx512 and avx512_vnni. Please note that this build config does not support Intel GPU. For Intel GPU support, please refer to llama.cpp for SYCL.

    • Using manual oneAPI installation: By default, LLAMA_BLAS_VENDOR is set to Generic, so if you already sourced intel environment script and assign -DLLAMA_BLAS=ON in cmake, the mkl version of Blas will automatically been selected. Otherwise please install oneAPI and follow the below steps:

      mkdir build
      cd build
      source /opt/intel/oneapi/setvars.sh # You can skip this step if  in oneapi-basekit docker image, only required for manual installation
      cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_NATIVE=ON
      cmake --build . --config Release
      
    • Using oneAPI docker image: If you do not want to source the environment vars and install oneAPI manually, you can also build the code using intel docker container: oneAPI-basekit. Then, you can use the commands given above.

    Check Optimizing and Running LLaMA2 on Intel® CPU for more information.

  • cuBLAS

    This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. apt install nvidia-cuda-toolkit) or from here: CUDA Toolkit.

    For Jetson user, if you have Jetson Orin, you can try this: Offical Support. If you are using an old model(nano/TX2), need some additional operations before compiling.

    • Using make:

      make LLAMA_CUBLAS=1
      
    • Using CMake:

      mkdir build
      cd build
      cmake .. -DLLAMA_CUBLAS=ON
      cmake --build . --config Release
      

    The environment variable CUDA_VISIBLE_DEVICES can be used to specify which GPU(s) will be used. The following compilation options are also available to tweak performance:

Option Legal values Default Description
LLAMA_CUDA_FORCE_DMMV Boolean false Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants.
LLAMA_CUDA_DMMV_X Positive integer >= 32 32 Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants.
LLAMA_CUDA_MMV_Y Positive integer 1 Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended.
LLAMA_CUDA_F16 Boolean false If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs.
LLAMA_CUDA_KQUANTS_ITER 1 or 2 2 Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs.
LLAMA_CUDA_PEER_MAX_BATCH_SIZE Positive integer 128 Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial.
  • hipBLAS

    This provides BLAS acceleration on HIP-supported AMD GPUs. Make sure to have ROCm installed. You can download it from your Linux distro's package manager or from here: ROCm Quick Start (Linux).

    • Using make:

      make LLAMA_HIPBLAS=1
      
    • Using CMake for Linux (assuming a gfx1030-compatible AMD GPU):

      CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ \
          cmake -H. -Bbuild -DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
          && cmake --build build -- -j 16
      

      On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting -DLLAMA_HIP_UMA=ON". However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).

    • Using make (example for target gfx1030, build with 16 CPU threads):

      make -j16 LLAMA_HIPBLAS=1 LLAMA_HIP_UMA=1 AMDGPU_TARGETS=gxf1030
      
    • Using CMake for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):

      set PATH=%HIP_PATH%\bin;%PATH%
      mkdir build
      cd build
      cmake -G Ninja -DAMDGPU_TARGETS=gfx1100 -DLLAMA_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ ..
      cmake --build .
      

      Make sure that AMDGPU_TARGETS is set to the GPU arch you want to compile for. The above example uses gfx1100 that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets here Find your gpu version string by matching the most significant version information from rocminfo | grep gfx | head -1 | awk '{print $2}' with the list of processors, e.g. gfx1035 maps to gfx1030.

    The environment variable HIP_VISIBLE_DEVICES can be used to specify which GPU(s) will be used. If your GPU is not officially supported you can use the environment variable [HSA_OVERRIDE_GFX_VERSION] set to a similar GPU, for example 10.3.0 on RDNA2 (e.g. gfx1030, gfx1031, or gfx1035) or 11.0.0 on RDNA3. The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):

    Option Legal values Default Description
    LLAMA_CUDA_DMMV_X Positive integer >= 32 32 Number of values in x direction processed by the HIP dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants.
    LLAMA_CUDA_MMV_Y Positive integer 1 Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants.
    LLAMA_CUDA_KQUANTS_ITER 1 or 2 2 Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs.
  • CLBlast

    OpenCL acceleration is provided by the matrix multiplication kernels from the CLBlast project and custom kernels for ggml that can generate tokens on the GPU.

    You will need the OpenCL SDK.

    • For Ubuntu or Debian, the packages opencl-headers, ocl-icd may be needed.

    • For Windows, a pre-built SDK is available on the OpenCL Releases page.

    • Installing the OpenCL SDK from source
      git clone --recurse-submodules https://github.com/KhronosGroup/OpenCL-SDK.git
      mkdir OpenCL-SDK/build
      cd OpenCL-SDK/build
      cmake .. -DBUILD_DOCS=OFF \
        -DBUILD_EXAMPLES=OFF \
        -DBUILD_TESTING=OFF \
        -DOPENCL_SDK_BUILD_SAMPLES=OFF \
        -DOPENCL_SDK_TEST_SAMPLES=OFF
      cmake --build . --config Release
      cmake --install . --prefix /some/path
      
    Installing CLBlast

    Pre-built CLBlast binaries may be found on the CLBlast Releases page. For Unix variants, it may also be found in your operating system's packages.

    Alternatively, they may be built from source.

    • Windows:
      set OPENCL_SDK_ROOT="C:/OpenCL-SDK-v2023.04.17-Win-x64"
      git clone https://github.com/CNugteren/CLBlast.git
      mkdir CLBlast\build
      cd CLBlast\build
      cmake .. -DBUILD_SHARED_LIBS=OFF -DOVERRIDE_MSVC_FLAGS_TO_MT=OFF -DTUNERS=OFF -DOPENCL_ROOT=%OPENCL_SDK_ROOT% -G "Visual Studio 17 2022" -A x64
      cmake --build . --config Release
      cmake --install . --prefix C:/CLBlast
      
    • Unix:
      git clone https://github.com/CNugteren/CLBlast.git
      mkdir CLBlast/build
      cd CLBlast/build
      cmake .. -DBUILD_SHARED_LIBS=OFF -DTUNERS=OFF
      cmake --build . --config Release
      cmake --install . --prefix /some/path
      

      Where /some/path is where the built library will be installed (default is /usr/local).

    Building Llama with CLBlast
    • Build with make:
      make LLAMA_CLBLAST=1
      
    • CMake (Unix):
      mkdir build
      cd build
      cmake .. -DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path
      cmake --build . --config Release
      
    • CMake (Windows):
      set CL_BLAST_CMAKE_PKG="C:/CLBlast/lib/cmake/CLBlast"
      git clone https://github.com/ggerganov/llama.cpp
      cd llama.cpp
      mkdir build
      cd build
      cmake .. -DBUILD_SHARED_LIBS=OFF -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=%CL_BLAST_CMAKE_PKG% -G "Visual Studio 17 2022" -A x64
      cmake --build . --config Release
      cmake --install . --prefix C:/LlamaCPP
      
    Running Llama with CLBlast

    The CLBlast build supports --gpu-layers|-ngl like the CUDA version does.

    To select the correct platform (driver) and device (GPU), you can use the environment variables GGML_OPENCL_PLATFORM and GGML_OPENCL_DEVICE. The selection can be a number (starting from 0) or a text string to search:

    GGML_OPENCL_PLATFORM=1 ./main ...
    GGML_OPENCL_DEVICE=2 ./main ...
    GGML_OPENCL_PLATFORM=Intel ./main ...
    GGML_OPENCL_PLATFORM=AMD GGML_OPENCL_DEVICE=1 ./main ...
    

    The default behavior is to find the first GPU device, but when it is an integrated GPU on a laptop, for instance, the selectors are useful. Using the variables it is possible to select a CPU-based driver as well, if so desired.

    You can get a list of platforms and devices from the clinfo -l command, etc.

  • Vulkan

    With docker:

    You don't need to install Vulkan SDK. It will be installed inside the container.

    # Build the image
    docker build -t llama-cpp-vulkan -f .devops/main-vulkan.Dockerfile .
    
    # Then, use it:
    docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-vulkan -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
    

    Without docker:

    Firstly, you need to make sure you have installed Vulkan SDK

    For example, on Ubuntu 22.04 (jammy), use the command below:

    wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add -
    wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
    apt update -y
    apt-get install -y vulkan-sdk
    # To verify the installation, use the command below:
    vulkaninfo
    

    Alternatively your package manager might be able to provide the appropiate libraries. For example for Ubuntu 22.04 you can install libvulkan-dev instead.

    Then, build llama.cpp using the cmake command below:

    mkdir -p build
    cd build
    cmake .. -DLLAMA_VULKAN=1
    cmake --build . --config Release
    # Test the output binary (with "-ngl 33" to offload all layers to GPU)
    ./bin/main -m "PATH_TO_MODEL" -p "Hi you how are you" -n 50 -e -ngl 33 -t 4
    
    # You should see in the output, ggml_vulkan detected your GPU. For example:
    # ggml_vulkan: Using Intel(R) Graphics (ADL GT2) | uma: 1 | fp16: 1 | warp size: 32
    

Prepare and Quantize

To obtain the official LLaMA 2 weights please see the Obtaining and using the Facebook LLaMA 2 model section. There is also a large selection of pre-quantized gguf models available on Hugging Face.

# obtain the official LLaMA model weights and place them in ./models
ls ./models
llama-2-7b tokenizer_checklist.chk tokenizer.model
# [Optional] for models using BPE tokenizers
ls ./models
<folder containing weights and tokenizer json> vocab.json
# [Optional] for PyTorch .bin models like Mistral-7B
ls ./models
<folder containing weights and tokenizer json>

# install Python dependencies
python3 -m pip install -r requirements.txt

# convert the model to ggml FP16 format
python3 convert.py models/mymodel/

# [Optional] for models using BPE tokenizers
python convert.py models/mymodel/ --vocab-type bpe

# quantize the model to 4-bits (using Q4_K_M method)
./quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M

# update the gguf filetype to current version if older version is now unsupported
./quantize ./models/mymodel/ggml-model-Q4_K_M.gguf ./models/mymodel/ggml-model-Q4_K_M-v2.gguf COPY

Run the quantized model

# start inference on a gguf model
./main -m ./models/mymodel/ggml-model-Q4_K_M.gguf -n 128

When running the larger models, make sure you have enough disk space to store all the intermediate files.

Running on Windows with prebuilt binaries

You will find prebuilt Windows binaries on the release page.

Simply download and extract the latest zip package of choice: (e.g. llama-b1380-bin-win-avx2-x64.zip)

From the unzipped folder, open a terminal/cmd window here and place a pre-converted .gguf model file. Test out the main example like so:

.\main -m llama-2-7b.Q4_0.gguf -n 128

Memory/Disk Requirements

As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same.

Model Original size Quantized size (Q4_0)
7B 13 GB 3.9 GB
13B 24 GB 7.8 GB
30B 60 GB 19.5 GB
65B 120 GB 38.5 GB

Quantization

Several quantization methods are supported. They differ in the resulting model disk size and inference speed.

(outdated)

Model Measure F16 Q4_0 Q4_1 Q5_0 Q5_1 Q8_0
7B perplexity 5.9066 6.1565 6.0912 5.9862 5.9481 5.9070
7B file size 13.0G 3.5G 3.9G 4.3G 4.7G 6.7G
7B ms/tok @ 4th 127 55 54 76 83 72
7B ms/tok @ 8th 122 43 45 52 56 67
7B bits/weight 16.0 4.5 5.0 5.5 6.0 8.5
13B perplexity 5.2543 5.3860 5.3608 5.2856 5.2706 5.2548
13B file size 25.0G 6.8G 7.6G 8.3G 9.1G 13G
13B ms/tok @ 4th - 103 105 148 160 131
13B ms/tok @ 8th - 73 82 98 105 128
13B bits/weight 16.0 4.5 5.0 5.5 6.0 8.5

Perplexity (measuring model quality)

You can use the perplexity example to measure perplexity over a given prompt (lower perplexity is better). For more information, see https://huggingface.co/docs/transformers/perplexity.

The perplexity measurements in table above are done against the wikitext2 test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512. The time per token is measured on a MacBook M1 Pro 32GB RAM using 4 and 8 threads.

How to run

  1. Download/extract: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
  2. Run ./perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw
  3. Output:
perplexity : calculating perplexity over 655 chunks
24.43 seconds per pass - ETA 4.45 hours
[1]4.5970,[2]5.1807,[3]6.0382,...

And after 4.45 hours, you will have the final perplexity.

Interactive mode

If you want a more ChatGPT-like experience, you can run in interactive mode by passing -i as a parameter. In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a reverse prompt with the parameter -r "reverse prompt string". This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMa emulate a chat between multiple users, say Alice and Bob, and pass -r "Alice:".

Here is an example of a few-shot interaction, invoked with the command

# default arguments using a 7B model
./examples/chat.sh

# advanced chat with a 13B model
./examples/chat-13B.sh

# custom arguments using a 13B model
./main -m ./models/13B/ggml-model-q4_0.gguf -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt

Note the use of --color to distinguish between user input and generated text. Other parameters are explained in more detail in the README for the main example program.

image

Persistent Interaction

The prompt, user inputs, and model generations can be saved and resumed across calls to ./main by leveraging --prompt-cache and --prompt-cache-all. The ./examples/chat-persistent.sh script demonstrates this with support for long-running, resumable chat sessions. To use this example, you must provide a file to cache the initial chat prompt and a directory to save the chat session, and may optionally provide the same variables as chat-13B.sh. The same prompt cache can be reused for new chat sessions. Note that both prompt cache and chat directory are tied to the initial prompt (PROMPT_TEMPLATE) and the model file.

# Start a new chat
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/default ./examples/chat-persistent.sh

# Resume that chat
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/default ./examples/chat-persistent.sh

# Start a different chat with the same prompt/model
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/another ./examples/chat-persistent.sh

# Different prompt cache for different prompt/model
PROMPT_TEMPLATE=./prompts/chat-with-bob.txt PROMPT_CACHE_FILE=bob.prompt.bin \
    CHAT_SAVE_DIR=./chat/bob ./examples/chat-persistent.sh

Constrained output with grammars

llama.cpp supports grammars to constrain model output. For example, you can force the model to output JSON only:

./main -m ./models/13B/ggml-model-q4_0.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:'

The grammars/ folder contains a handful of sample grammars. To write your own, check out the GBNF Guide.

For authoring more complex JSON grammars, you can also check out https://grammar.intrinsiclabs.ai/, a browser app that lets you write TypeScript interfaces which it compiles to GBNF grammars that you can save for local use. Note that the app is built and maintained by members of the community, please file any issues or FRs on its repo and not this one.

Instruct mode

  1. First, download and place the ggml model into the ./models folder
  2. Run the main tool like this:
./examples/alpaca.sh

Sample run:

== Running in interactive mode. ==
 - Press Ctrl+C to interject at any time.
 - Press Return to return control to LLaMa.
 - If you want to submit another line, end your input in '\'.

 Below is an instruction that describes a task. Write a response that appropriately completes the request.

> How many letters are there in the English alphabet?
There 26 letters in the English Alphabet
> What is the most common way of transportation in Amsterdam?
The majority (54%) are using public transit. This includes buses, trams and metros with over 100 lines throughout the city which make it very accessible for tourists to navigate around town as well as locals who commute by tram or metro on a daily basis
> List 5 words that start with "ca".
cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach.
>

Obtaining and using the Facebook LLaMA 2 model

Seminal papers and background on the models

If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:

Android

Building the Project using Android NDK

You can easily run llama.cpp on Android device with termux.

First, install the essential packages for termux:

pkg install clang wget git cmake

Second, obtain the Android NDK and then build with CMake:

$ mkdir build-android
$ cd build-android
$ export NDK=<your_ndk_directory>
$ cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
$ make

Install termux on your device and run termux-setup-storage to get access to your SD card. Finally, copy the llama binary and the model files to your device storage. Here is a demo of an interactive session running on Pixel 5 phone:

https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4

Building the Project using Termux (F-Droid)

Termux from F-Droid offers an alternative route to execute the project on an Android device. This method empowers you to construct the project right from within the terminal, negating the requirement for a rooted device or SD Card.

Outlined below are the directives for installing the project using OpenBLAS and CLBlast. This combination is specifically designed to deliver peak performance on recent devices that feature a GPU.

If you opt to utilize OpenBLAS, you'll need to install the corresponding package.

apt install libopenblas

Subsequently, if you decide to incorporate CLBlast, you'll first need to install the requisite OpenCL packages:

apt install ocl-icd opencl-headers opencl-clhpp clinfo

In order to compile CLBlast, you'll need to first clone the respective Git repository, which can be found at this URL: https://github.com/CNugteren/CLBlast. Alongside this, clone this repository into your home directory. Once this is done, navigate to the CLBlast folder and execute the commands detailed below:

cmake .
make
cp libclblast.so* $PREFIX/lib
cp ./include/clblast.h ../llama.cpp

Following the previous steps, navigate to the LlamaCpp directory. To compile it with OpenBLAS and CLBlast, execute the command provided below:

cp /data/data/com.termux/files/usr/include/openblas/cblas.h .
cp /data/data/com.termux/files/usr/include/openblas/openblas_config.h .
make LLAMA_CLBLAST=1 //(sometimes you need to run this command twice)

Upon completion of the aforementioned steps, you will have successfully compiled the project. To run it using CLBlast, a slight adjustment is required: a command must be issued to direct the operations towards your device's physical GPU, rather than the virtual one. The necessary command is detailed below:

GGML_OPENCL_PLATFORM=0
GGML_OPENCL_DEVICE=0
export LD_LIBRARY_PATH=/vendor/lib64:$LD_LIBRARY_PATH

(Note: some Android devices, like the Zenfone 8, need the following command instead - "export LD_LIBRARY_PATH=/system/vendor/lib64:$LD_LIBRARY_PATH". Source: https://www.reddit.com/r/termux/comments/kc3ynp/opencl_working_in_termux_more_in_comments/ )

For easy and swift re-execution, consider documenting this final part in a .sh script file. This will enable you to rerun the process with minimal hassle.

Place your desired model into the ~/llama.cpp/models/ directory and execute the ./main (...) script.

Docker

Prerequisites

  • Docker must be installed and running on your system.
  • Create a folder to store big models & intermediate files (ex. /llama/models)

Images

We have three Docker images available for this project:

  1. ghcr.io/ggerganov/llama.cpp:full: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: linux/amd64, linux/arm64)
  2. ghcr.io/ggerganov/llama.cpp:light: This image only includes the main executable file. (platforms: linux/amd64, linux/arm64)
  3. ghcr.io/ggerganov/llama.cpp:server: This image only includes the server executabhle file. (platforms: linux/amd64, linux/arm64)

Additionally, there the following images, similar to the above:

  • ghcr.io/ggerganov/llama.cpp:full-cuda: Same as full but compiled with CUDA support. (platforms: linux/amd64)
  • ghcr.io/ggerganov/llama.cpp:light-cuda: Same as light but compiled with CUDA support. (platforms: linux/amd64)
  • ghcr.io/ggerganov/llama.cpp:server-cuda: Same as server but compiled with CUDA support. (platforms: linux/amd64)
  • ghcr.io/ggerganov/llama.cpp:full-rocm: Same as full but compiled with ROCm support. (platforms: linux/amd64, linux/arm64)
  • ghcr.io/ggerganov/llama.cpp:light-rocm: Same as light but compiled with ROCm support. (platforms: linux/amd64, linux/arm64)
  • ghcr.io/ggerganov/llama.cpp:server-rocm: Same as server but compiled with ROCm support. (platforms: linux/amd64, linux/arm64)

The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in .devops/ and the GitHub Action defined in .github/workflows/docker.yml. If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now).

Usage

The easiest way to download the models, convert them to ggml and optimize them is with the --all-in-one command which includes the full docker image.

Replace /path/to/models below with the actual path where you downloaded the models.

docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-one "/models/" 7B

On completion, you are ready to play!

docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512

or with a light image:

docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512

or with a server image:

docker run -v /path/to/models:/models -p 8000:8000 ghcr.io/ggerganov/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512

Docker With CUDA

Assuming one has the nvidia-container-toolkit properly installed on Linux, or is using a GPU enabled cloud, cuBLAS should be accessible inside the container.

Building Locally

docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile .
docker build -t local/llama.cpp:light-cuda -f .devops/main-cuda.Dockerfile .
docker build -t local/llama.cpp:server-cuda -f .devops/server-cuda.Dockerfile .

You may want to pass in some different ARGS, depending on the CUDA environment supported by your container host, as well as the GPU architecture.

The defaults are:

  • CUDA_VERSION set to 11.7.1
  • CUDA_DOCKER_ARCH set to all

The resulting images, are essentially the same as the non-CUDA images:

  1. local/llama.cpp:full-cuda: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
  2. local/llama.cpp:light-cuda: This image only includes the main executable file.
  3. local/llama.cpp:server-cuda: This image only includes the server executable file.

Usage

After building locally, Usage is similar to the non-CUDA examples, but you'll need to add the --gpus flag. You will also want to use the --n-gpu-layers flag.

docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run --gpus all -v /path/to/models:/models local/llama.cpp:server-cuda -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512 --n-gpu-layers 1

Contributing

  • Contributors can open PRs
  • Collaborators can push to branches in the llama.cpp repo and merge PRs into the master branch
  • Collaborators will be invited based on contributions
  • Any help with managing issues and PRs is very appreciated!
  • Make sure to read this: Inference at the edge
  • A bit of backstory for those who are interested: Changelog podcast

Coding guidelines

  • Avoid adding third-party dependencies, extra files, extra headers, etc.
  • Always consider cross-compatibility with other operating systems and architectures
  • Avoid fancy looking modern STL constructs, use basic for loops, avoid templates, keep it simple
  • There are no strict rules for the code style, but try to follow the patterns in the code (indentation, spaces, etc.). Vertical alignment makes things more readable and easier to batch edit
  • Clean-up any trailing whitespaces, use 4 spaces for indentation, brackets on the same line, void * ptr, int & a
  • See good first issues for tasks suitable for first contributions
  • Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices
  • Matrix multiplication is unconventional: z = ggml_mul_mat(ctx, x, y) means zT = x @ yT

Docs