llama.cpp/ggml/src/ggml-sycl/norm.cpp
luoyu-intel d08c20edde
[SYCL] Fix the sub group size of Intel (#8106)
* use warp_size macro for all sycl kernels

* fix mask of permute_sub_group_by_xor

* fix rms_norm with correct warp number

* fix rms_norm_f32/group_norm_f32

* move norm to norm.cpp file

* fix quantize bug

* fix mmvq's batch size
2024-07-02 10:16:00 +08:00

371 lines
13 KiB
C++

#include "norm.hpp"
static void norm_f32(const float* x, float* dst, const int ncols, const float eps,
const sycl::nd_item<3>& item_ct1, sycl::float2* s_sum, int block_size) {
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
item_ct1.get_local_id(1);
const int tid = item_ct1.get_local_id(2);
const int nthreads = item_ct1.get_local_range(2);
const int nwarps = nthreads / WARP_SIZE;
assert(nwarps % WARP_SIZE == 0);
sycl::float2 mean_var = sycl::float2(0.f, 0.f);
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[row * ncols + col];
mean_var.x() += xi;
mean_var.y() += xi * xi;
}
// sum up partial sums
mean_var = warp_reduce_sum(mean_var, item_ct1);
if (block_size > WARP_SIZE) {
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = mean_var;
}
/*
DPCT1118:0: SYCL group functions and algorithms must be encountered in
converged control flow. You may need to adjust the code.
*/
item_ct1.barrier(sycl::access::fence_space::local_space);
mean_var = 0.f;
int nreduce = nwarps / WARP_SIZE;
for (size_t i = 0; i < nreduce; i += 1)
{
mean_var += s_sum[lane_id + i * WARP_SIZE];
}
mean_var = warp_reduce_sum(mean_var, item_ct1);
}
const float mean = mean_var.x() / ncols;
const float var = mean_var.y() / ncols - mean * mean;
const float inv_std = sycl::rsqrt(var + eps);
for (int col = tid; col < ncols; col += block_size) {
dst[row * ncols + col] = (x[row * ncols + col] - mean) * inv_std;
}
}
static void group_norm_f32(const float* x, float* dst, const int group_size, const int ne_elements, const float eps,
const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
int start = item_ct1.get_group(2) * group_size;
int end = start + group_size;
const int nthreads = item_ct1.get_local_range(2);
const int nwarps = nthreads / WARP_SIZE;
assert(nwarps % WARP_SIZE == 0);
start += item_ct1.get_local_id(2);
if (end >= ne_elements) {
end = ne_elements;
}
float tmp = 0.0f; // partial sum for thread in warp
for (int j = start; j < end; j += block_size) {
tmp += x[j];
}
tmp = warp_reduce_sum(tmp, item_ct1);
if (block_size > WARP_SIZE) {
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
/*
DPCT1118:1: SYCL group functions and algorithms must be encountered in
converged control flow. You may need to adjust the code.
*/
/*
DPCT1065:54: Consider replacing sycl::nd_item::barrier() with
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
better performance if there is no access to global memory.
*/
item_ct1.barrier();
tmp = 0.f;
int nreduce = nwarps / WARP_SIZE;
for (size_t i = 0; i < nreduce; i += 1)
{
tmp += s_sum[lane_id + i * WARP_SIZE];
}
tmp = warp_reduce_sum(tmp, item_ct1);
}
float mean = tmp / group_size;
tmp = 0.0f;
for (int j = start; j < end; j += block_size) {
float xi = x[j] - mean;
dst[j] = xi;
tmp += xi * xi;
}
tmp = warp_reduce_sum(tmp, item_ct1);
if (block_size > WARP_SIZE) {
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
/*
DPCT1118:2: SYCL group functions and algorithms must be encountered in
converged control flow. You may need to adjust the code.
*/
/*
DPCT1065:55: Consider replacing sycl::nd_item::barrier() with
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
better performance if there is no access to global memory.
*/
item_ct1.barrier();
tmp = s_sum[lane_id];
tmp = warp_reduce_sum(tmp, item_ct1);
}
float variance = tmp / group_size;
float scale = sycl::rsqrt(variance + eps);
for (int j = start; j < end; j += block_size) {
dst[j] *= scale;
}
}
static void rms_norm_f32(const float* x, float* dst, const int ncols, const float eps,
const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
item_ct1.get_local_id(1);
const int tid = item_ct1.get_local_id(2);
const int nthreads = item_ct1.get_local_range(2);
const int nwarps = nthreads / WARP_SIZE;
assert(nwarps % WARP_SIZE == 0);
float tmp = 0.0f; // partial sum for thread in warp
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[row * ncols + col];
tmp += xi * xi;
}
// sum up partial sums
tmp = warp_reduce_sum(tmp, item_ct1);
if (block_size > WARP_SIZE) {
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
/*
DPCT1118:3: SYCL group functions and algorithms must be encountered in
converged control flow. You may need to adjust the code.
*/
item_ct1.barrier(sycl::access::fence_space::local_space);
int nreduce = nwarps / WARP_SIZE;
tmp = 0.f;
for (size_t i = 0; i < nreduce; i += 1)
{
tmp += s_sum[lane_id + i * WARP_SIZE];
}
tmp = warp_reduce_sum(tmp, item_ct1);
}
const float mean = tmp / ncols;
const float scale = sycl::rsqrt(mean + eps);
for (int col = tid; col < ncols; col += block_size) {
dst[row * ncols + col] = scale * x[row * ncols + col];
}
}
static void norm_f32_sycl(const float* x, float* dst, const int ncols,
const int nrows, const float eps,
queue_ptr stream) {
GGML_ASSERT(ncols % WARP_SIZE == 0);
if (ncols < 1024) {
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
stream->submit([&](sycl::handler& cgh) {
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
norm_f32(x, dst, ncols, eps, item_ct1,
nullptr, WARP_SIZE);
});
});
}
else {
const int work_group_size = get_work_group_size(stream->get_device());
const sycl::range<3> block_dims(1, 1, work_group_size);
/*
DPCT1049:17: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
stream->submit([&](sycl::handler& cgh) {
sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
sycl::range<1>(work_group_size / WARP_SIZE), cgh);
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
norm_f32(x, dst, ncols, eps, item_ct1,
s_sum_acc_ct1.get_pointer(), work_group_size);
});
});
}
}
static void group_norm_f32_sycl(const float* x, float* dst,
const int num_groups, const int group_size,
const int ne_elements, queue_ptr stream) {
static const float eps = 1e-6f;
if (group_size < 1024) {
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
stream->submit([&](sycl::handler& cgh) {
const float eps_ct4 = eps;
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
group_norm_f32(
x, dst, group_size, ne_elements, eps_ct4, item_ct1,
nullptr, WARP_SIZE);
});
});
}
else {
const int work_group_size = get_work_group_size(stream->get_device());
const sycl::range<3> block_dims(1, 1, work_group_size);
/*
DPCT1049:18: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
stream->submit([&](sycl::handler& cgh) {
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE),
cgh);
const float eps_ct4 = eps;
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
group_norm_f32(x, dst, group_size, ne_elements,
eps_ct4, item_ct1,
s_sum_acc_ct1.get_pointer(), work_group_size);
});
});
}
}
static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols,
const int nrows, const float eps,
queue_ptr stream) {
GGML_ASSERT(ncols % WARP_SIZE == 0);
// printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
if (ncols < 1024) {
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
stream->submit([&](sycl::handler& cgh) {
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
rms_norm_f32(x, dst, ncols, eps, item_ct1,
nullptr, WARP_SIZE);
});
});
}
else {
const int work_group_size = get_work_group_size(stream->get_device());
const sycl::range<3> block_dims(1, 1, work_group_size);
/*
DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
stream->submit([&](sycl::handler& cgh) {
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE),
cgh);
cgh.parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
rms_norm_f32(x, dst, ncols, eps, item_ct1,
s_sum_acc_ct1.get_pointer(), work_group_size);
});
});
}
}
void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst, const float* src0_dd,
const float* src1_dd, float* dst_dd,
const queue_ptr& main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
(void)src1;
(void)dst;
(void)src1_dd;
}
void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst,
const float* src0_dd, const float* src1_dd,
float* dst_dd,
const queue_ptr& main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
int num_groups = dst->op_params[0];
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
group_norm_f32_sycl(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream);
(void)src1;
(void)dst;
(void)src1_dd;
}
void ggml_sycl_op_rms_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst,
const float* src0_dd, const float* src1_dd,
float* dst_dd,
const queue_ptr& main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
(void)src1;
(void)dst;
(void)src1_dd;
}