mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 20:22:25 +01:00
f66f582927
* llama : scatter llama.cpp into multiple modules (wip) * llama : control-vector -> adapter * llama : arch * llama : mmap ggml-ci * ci : remove BUILD_SHARED_LIBS=OFF ggml-ci * llama : arch (cont) ggml-ci * llama : chat ggml-ci * llama : model ggml-ci * llama : hparams ggml-ci * llama : adapter ggml-ci * examples : fix ggml-ci * rebase ggml-ci * minor * llama : kv cache ggml-ci * llama : impl ggml-ci * llama : batch ggml-ci * cont ggml-ci * llama : context ggml-ci * minor * llama : context (cont) ggml-ci * llama : model loader ggml-ci * common : update lora ggml-ci * llama : quant ggml-ci * llama : quant (cont) ggml-ci * minor [no ci]
129 lines
4.9 KiB
C++
129 lines
4.9 KiB
C++
#pragma once
|
|
|
|
#include "llama.h"
|
|
#include "llama-batch.h"
|
|
#include "llama-cparams.h"
|
|
#include "llama-model.h"
|
|
#include "llama-kv-cache.h"
|
|
#include "llama-adapter.h"
|
|
|
|
#include "ggml-cpp.h"
|
|
|
|
#include <map>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
#include <set>
|
|
|
|
struct llama_context {
|
|
llama_context(const llama_model & model)
|
|
: model(model)
|
|
, t_start_us(model.t_start_us)
|
|
, t_load_us(model.t_load_us) {}
|
|
|
|
const struct llama_model & model;
|
|
|
|
struct llama_cparams cparams;
|
|
struct llama_sbatch sbatch; // TODO: revisit if needed
|
|
struct llama_kv_cache kv_self;
|
|
struct llama_control_vector cvec;
|
|
|
|
std::unordered_map<struct llama_lora_adapter *, float> lora_adapters;
|
|
|
|
std::vector<ggml_backend_ptr> backends;
|
|
std::vector<std::pair<ggml_backend_t, ggml_backend_set_n_threads_t>> set_n_threads_fns;
|
|
|
|
ggml_backend_t backend_cpu = nullptr;
|
|
|
|
ggml_threadpool_t threadpool = nullptr;
|
|
ggml_threadpool_t threadpool_batch = nullptr;
|
|
|
|
bool has_evaluated_once = false;
|
|
|
|
mutable int64_t t_start_us;
|
|
mutable int64_t t_load_us;
|
|
mutable int64_t t_p_eval_us = 0;
|
|
mutable int64_t t_eval_us = 0;
|
|
|
|
mutable int64_t t_compute_start_us = 0;
|
|
mutable int64_t n_queued_tokens = 0;
|
|
|
|
mutable int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
|
|
mutable int32_t n_eval = 0; // number of eval calls
|
|
|
|
// host buffer for the model output (logits and embeddings)
|
|
ggml_backend_buffer_ptr buf_output;
|
|
|
|
// decode output (2-dimensional array: [n_outputs][n_vocab])
|
|
size_t logits_size = 0; // capacity (of floats) for logits
|
|
float * logits = nullptr;
|
|
|
|
std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
|
|
size_t output_size = 0; // capacity (of tokens positions) for the output buffers
|
|
int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
|
|
|
|
bool logits_all = false;
|
|
|
|
// embeddings output (2-dimensional array: [n_outputs][n_embd])
|
|
// populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
|
|
size_t embd_size = 0; // capacity (of floats) for embeddings
|
|
float * embd = nullptr;
|
|
|
|
// sequence embeddings output (map of [n_embd] vectors)
|
|
// populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
|
|
std::map<llama_seq_id, std::vector<float>> embd_seq;
|
|
|
|
// whether we are computing encoder output or decoder output
|
|
bool is_encoding = false;
|
|
|
|
// TODO: find a better way to accommodate mutli-dimension position encoding methods
|
|
// number of position id each token get, 1 for each token in most cases.
|
|
// when using m-rope, it will be 3 position ids per token to representing 3 dimension coordinate.
|
|
int n_pos_per_token = 1;
|
|
|
|
// output of the encoder part of the encoder-decoder models
|
|
std::vector<float> embd_enc;
|
|
std::vector<std::set<llama_seq_id>> seq_ids_enc;
|
|
|
|
// memory buffers used to evaluate the model
|
|
std::vector<uint8_t> buf_compute_meta;
|
|
ggml_backend_sched_ptr sched;
|
|
|
|
ggml_abort_callback abort_callback = nullptr;
|
|
void * abort_callback_data = nullptr;
|
|
|
|
// input tensors
|
|
struct ggml_tensor * inp_tokens; // I32 [n_batch]
|
|
struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
|
|
struct ggml_tensor * inp_pos; // I32 [n_batch]
|
|
struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
|
|
struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
|
|
struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch]
|
|
struct ggml_tensor * inp_K_shift; // I32 [kv_size]
|
|
struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
|
|
struct ggml_tensor * inp_cls; // I32 [n_batch]
|
|
struct ggml_tensor * inp_s_copy; // I32 [kv_size]
|
|
struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
|
|
struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
|
|
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
|
|
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
|
|
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
|
|
};
|
|
|
|
// TODO: make these methods of llama_context
|
|
void llama_set_k_shift(struct llama_context & lctx);
|
|
|
|
void llama_set_s_copy(struct llama_context & lctx);
|
|
|
|
void llama_set_inputs(llama_context & lctx, const llama_ubatch & ubatch);
|
|
|
|
// Make sure enough space is available for outputs.
|
|
// Returns max number of outputs for which space was reserved.
|
|
size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs);
|
|
|
|
// make the outputs have the same order they had in the user-provided batch
|
|
void llama_output_reorder(struct llama_context & ctx);
|
|
|
|
// For internal test use
|
|
// TODO: remove
|
|
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(struct llama_context * ctx);
|