text-generation-webui/extensions/Training_PRO/custom_scheduler.py

96 lines
4.4 KiB
Python
Raw Normal View History

2023-09-17 16:09:31 +02:00
from functools import partial
import torch
import transformers
import math
from torch.optim.lr_scheduler import LambdaLR
#FPHAM custom training scheduller block - should be extracted to separate file
last_print_label = ''
def _get_fp_cosine_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int):
global last_print_label
print_label = ''
num_warmup_steps = min(num_warmup_steps,num_firstepoch_steps)
if current_step < num_warmup_steps:
print_label = 'Scheduler: Warmup'
elif current_step < num_firstepoch_steps:
print_label = 'Scheduler: Hold'
else:
print_label = 'Scheduler: Annealing'
if print_label != last_print_label:
print(print_label)
last_print_label = print_label
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
if current_step < num_firstepoch_steps:
return 1.0
progress = float(current_step - num_firstepoch_steps) / float(max(1, num_training_steps - num_firstepoch_steps))
num_cycles = 0.5
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
def custom_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1):
"""
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(
_get_fp_cosine_schedule_with_warmup_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_firstepoch_steps = num_firstepoch_steps,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
class FPSchedulerTrainer(transformers.Trainer):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None):
#Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or passed as an argument.
if self.args.lr_scheduler_type == 'cosine':
num_train_epochs = self.args.num_train_epochs
num_warmup_steps=self.args.get_warmup_steps(num_training_steps)
num_firstepoch_steps = math.ceil(num_training_steps/num_train_epochs)
num_warmup_acc = num_warmup_steps*self.args.gradient_accumulation_steps
num_firstepoch_steps_acc = num_firstepoch_steps*self.args.gradient_accumulation_steps
num_training_steps_acc = num_training_steps*self.args.gradient_accumulation_steps
num_warmup_acc_min = min(num_warmup_acc, num_firstepoch_steps_acc)
if num_warmup_acc>num_firstepoch_steps_acc:
print(f"\033[1;31;1mWARNING: The number of warmup steps is set too high! It will be clamped to 1 epoch, essentially going from warmup to annealing.\033[0;37;0m")
print (f"FP Scheduler Warmup: 0-[{num_warmup_acc_min}], Hold [{num_warmup_acc_min}]-{num_firstepoch_steps_acc}, Annealing {num_firstepoch_steps_acc}-{num_training_steps_acc}")
else:
print (f"FP Scheduler Warmup: 0-{num_warmup_acc_min}, Hold {num_warmup_acc_min}-{num_firstepoch_steps_acc}, Annealing {num_firstepoch_steps_acc}-{num_training_steps_acc}")
self.lr_scheduler = custom_scheduler_with_warmup(
optimizer=self.optimizer if optimizer is None else optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_firstepoch_steps = num_firstepoch_steps,
)
self._created_lr_scheduler = True
return self.lr_scheduler
else:
return super().create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer)