text-generation-webui/extensions/openai/script.py

315 lines
10 KiB
Python
Raw Normal View History

import asyncio
2023-05-03 04:05:38 +02:00
import json
import os
import traceback
2023-05-03 03:49:53 +02:00
from threading import Thread
2023-05-10 03:49:39 +02:00
2023-09-16 05:11:16 +02:00
import extensions.openai.completions as OAIcompletions
import extensions.openai.embeddings as OAIembeddings
import extensions.openai.images as OAIimages
2023-09-16 05:11:16 +02:00
import extensions.openai.models as OAImodels
import extensions.openai.moderations as OAImoderations
import speech_recognition as sr
import uvicorn
from extensions.openai.errors import ServiceUnavailableError
2023-09-16 05:11:16 +02:00
from extensions.openai.tokens import token_count, token_decode, token_encode
from extensions.openai.utils import _start_cloudflared
from fastapi import Depends, FastAPI, Header, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.requests import Request
from fastapi.responses import JSONResponse
2023-09-16 05:11:16 +02:00
from modules import shared
from modules.logging_colors import logger
from modules.text_generation import stop_everything_event
from pydub import AudioSegment
from sse_starlette import EventSourceResponse
from .typing import (
ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
CompletionResponse,
DecodeRequest,
DecodeResponse,
EncodeRequest,
EncodeResponse,
LoadModelRequest,
2023-11-08 03:59:02 +01:00
ModelInfoResponse,
TokenCountResponse,
to_dict
)
2023-05-03 03:49:53 +02:00
params = {
'embedding_device': 'cpu',
'embedding_model': 'all-mpnet-base-v2',
'sd_webui_url': '',
'debug': 0
2023-05-03 03:49:53 +02:00
}
streaming_semaphore = asyncio.Semaphore(1)
def verify_api_key(authorization: str = Header(None)) -> None:
expected_api_key = shared.args.api_key
if expected_api_key and (authorization is None or authorization != f"Bearer {expected_api_key}"):
raise HTTPException(status_code=401, detail="Unauthorized")
app = FastAPI(dependencies=[Depends(verify_api_key)])
# Configure CORS settings to allow all origins, methods, and headers
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["GET", "HEAD", "OPTIONS", "POST", "PUT"],
allow_headers=[
"Origin",
"Accept",
"X-Requested-With",
"Content-Type",
"Access-Control-Request-Method",
"Access-Control-Request-Headers",
"Authorization",
],
)
@app.options("/")
async def options_route():
return JSONResponse(content="OK")
@app.post('/v1/completions', response_model=CompletionResponse)
async def openai_completions(request: Request, request_data: CompletionRequest):
path = request.url.path
is_legacy = "/generate" in path
2023-05-03 03:49:53 +02:00
if request_data.stream:
async def generator():
async with streaming_semaphore:
response = OAIcompletions.stream_completions(to_dict(request_data), is_legacy=is_legacy)
for resp in response:
disconnected = await request.is_disconnected()
if disconnected:
break
yield {"data": json.dumps(resp)}
return EventSourceResponse(generator()) # SSE streaming
else:
response = OAIcompletions.completions(to_dict(request_data), is_legacy=is_legacy)
return JSONResponse(response)
@app.post('/v1/chat/completions', response_model=ChatCompletionResponse)
async def openai_chat_completions(request: Request, request_data: ChatCompletionRequest):
path = request.url.path
is_legacy = "/generate" in path
2023-05-03 03:49:53 +02:00
if request_data.stream:
async def generator():
async with streaming_semaphore:
response = OAIcompletions.stream_chat_completions(to_dict(request_data), is_legacy=is_legacy)
for resp in response:
disconnected = await request.is_disconnected()
if disconnected:
break
yield {"data": json.dumps(resp)}
2023-05-03 03:49:53 +02:00
return EventSourceResponse(generator()) # SSE streaming
2023-07-12 20:33:25 +02:00
else:
response = OAIcompletions.chat_completions(to_dict(request_data), is_legacy=is_legacy)
return JSONResponse(response)
@app.get("/v1/models")
2023-11-08 04:59:27 +01:00
@app.get("/v1/models/{model}")
async def handle_models(request: Request):
path = request.url.path
2023-11-08 04:59:27 +01:00
is_list = request.url.path.split('?')[0].split('#')[0] == '/v1/models'
if is_list:
response = OAImodels.list_models()
else:
model_name = path[len('/v1/models/'):]
2023-11-08 04:59:27 +01:00
response = OAImodels.model_info_dict(model_name)
2023-05-03 04:05:38 +02:00
2023-11-08 04:59:27 +01:00
return JSONResponse(response)
2023-05-03 03:49:53 +02:00
@app.get('/v1/billing/usage')
def handle_billing_usage():
'''
Ex. /v1/dashboard/billing/usage?start_date=2023-05-01&end_date=2023-05-31
'''
return JSONResponse(content={"total_usage": 0})
@app.post('/v1/audio/transcriptions')
async def handle_audio_transcription(request: Request):
r = sr.Recognizer()
form = await request.form()
audio_file = await form["file"].read()
audio_data = AudioSegment.from_file(audio_file)
# Convert AudioSegment to raw data
raw_data = audio_data.raw_data
# Create AudioData object
audio_data = sr.AudioData(raw_data, audio_data.frame_rate, audio_data.sample_width)
whipser_language = form.getvalue('language', None)
whipser_model = form.getvalue('model', 'tiny') # Use the model from the form data if it exists, otherwise default to tiny
transcription = {"text": ""}
try:
transcription["text"] = r.recognize_whisper(audio_data, language=whipser_language, model=whipser_model)
except sr.UnknownValueError:
print("Whisper could not understand audio")
transcription["text"] = "Whisper could not understand audio UnknownValueError"
except sr.RequestError as e:
print("Could not request results from Whisper", e)
transcription["text"] = "Whisper could not understand audio RequestError"
return JSONResponse(content=transcription)
@app.post('/v1/images/generations')
async def handle_image_generation(request: Request):
if not os.environ.get('SD_WEBUI_URL', params.get('sd_webui_url', '')):
raise ServiceUnavailableError("Stable Diffusion not available. SD_WEBUI_URL not set.")
2023-05-03 03:49:53 +02:00
body = await request.json()
prompt = body['prompt']
size = body.get('size', '1024x1024')
response_format = body.get('response_format', 'url') # or b64_json
n = body.get('n', 1) # ignore the batch limits of max 10
2023-07-12 20:33:25 +02:00
response = await OAIimages.generations(prompt=prompt, size=size, response_format=response_format, n=n)
return JSONResponse(response)
2023-05-03 03:49:53 +02:00
@app.post("/v1/embeddings")
async def handle_embeddings(request: Request):
body = await request.json()
encoding_format = body.get("encoding_format", "")
input = body.get('input', body.get('text', ''))
if not input:
raise HTTPException(status_code=400, detail="Missing required argument input")
if type(input) is str:
input = [input]
response = OAIembeddings.embeddings(input, encoding_format)
return JSONResponse(response)
2023-05-03 03:49:53 +02:00
2023-07-12 20:33:25 +02:00
@app.post("/v1/moderations")
async def handle_moderations(request: Request):
body = await request.json()
input = body["input"]
if not input:
raise HTTPException(status_code=400, detail="Missing required argument input")
response = OAImoderations.moderations(input)
return JSONResponse(response)
2023-07-12 20:33:25 +02:00
@app.post("/v1/internal/encode", response_model=EncodeResponse)
async def handle_token_encode(request_data: EncodeRequest):
response = token_encode(request_data.text)
return JSONResponse(response)
2023-07-12 20:33:25 +02:00
@app.post("/v1/internal/decode", response_model=DecodeResponse)
async def handle_token_decode(request_data: DecodeRequest):
response = token_decode(request_data.tokens)
return JSONResponse(response)
2023-05-03 03:49:53 +02:00
@app.post("/v1/internal/token-count", response_model=TokenCountResponse)
async def handle_token_count(request_data: EncodeRequest):
response = token_count(request_data.text)
return JSONResponse(response)
@app.post("/v1/internal/stop-generation")
async def handle_stop_generation(request: Request):
stop_everything_event()
return JSONResponse(content="OK")
@app.get("/v1/internal/model/info", response_model=ModelInfoResponse)
2023-11-08 03:59:02 +01:00
async def handle_model_info():
payload = OAImodels.get_current_model_info()
return JSONResponse(content=payload)
@app.post("/v1/internal/model/load")
async def handle_load_model(request_data: LoadModelRequest):
'''
This endpoint is experimental and may change in the future.
The "args" parameter can be used to modify flags like "--load-in-4bit"
or "--n-gpu-layers" before loading a model. Example:
"args": {
"load_in_4bit": true,
"n_gpu_layers": 12
}
Note that those settings will remain after loading the model. So you
may need to change them back to load a second model.
The "settings" parameter is also a dict but with keys for the
shared.settings object. It can be used to modify the default instruction
template like this:
"settings": {
"instruction_template": "Alpaca"
}
'''
try:
OAImodels._load_model(to_dict(request_data))
return JSONResponse(content="OK")
except:
traceback.print_exc()
return HTTPException(status_code=400, detail="Failed to load the model.")
2023-05-03 03:49:53 +02:00
def run_server():
server_addr = '0.0.0.0' if shared.args.listen else '127.0.0.1'
port = int(os.environ.get('OPENEDAI_PORT', shared.args.api_port))
ssl_certfile = os.environ.get('OPENEDAI_CERT_PATH', shared.args.ssl_certfile)
ssl_keyfile = os.environ.get('OPENEDAI_KEY_PATH', shared.args.ssl_keyfile)
if shared.args.public_api:
def on_start(public_url: str):
logger.info(f'OpenAI compatible API URL:\n\n{public_url}\n')
_start_cloudflared(port, shared.args.public_api_id, max_attempts=3, on_start=on_start)
2023-05-03 03:49:53 +02:00
else:
if ssl_keyfile and ssl_certfile:
logger.info(f'OpenAI compatible API URL:\n\nhttps://{server_addr}:{port}\n')
else:
logger.info(f'OpenAI compatible API URL:\n\nhttp://{server_addr}:{port}\n')
if shared.args.api_key:
logger.info(f'OpenAI API key:\n\n{shared.args.api_key}\n')
uvicorn.run(app, host=server_addr, port=port, ssl_certfile=ssl_certfile, ssl_keyfile=ssl_keyfile)
2023-05-03 03:49:53 +02:00
def setup():
Thread(target=run_server, daemon=True).start()