text-generation-webui/server.py

534 lines
33 KiB
Python
Raw Normal View History

import io
import json
import re
import sys
import time
import zipfile
from datetime import datetime
from pathlib import Path
2022-12-21 17:27:31 +01:00
import gradio as gr
import modules.extensions as extensions_module
2023-03-28 02:24:39 +02:00
from modules import chat, shared, training, ui
2023-02-23 17:03:52 +01:00
from modules.html_generator import generate_chat_html
2023-03-17 15:42:25 +01:00
from modules.LoRA import add_lora_to_model
2023-02-23 18:41:42 +01:00
from modules.models import load_model, load_soft_prompt
2023-03-27 18:23:59 +02:00
from modules.text_generation import (clear_torch_cache, generate_reply,
stop_everything_event)
2022-12-21 17:27:31 +01:00
2023-02-23 18:31:28 +01:00
# Loading custom settings
settings_file = None
if shared.args.settings is not None and Path(shared.args.settings).exists():
settings_file = Path(shared.args.settings)
elif Path('settings.json').exists():
settings_file = Path('settings.json')
if settings_file is not None:
print(f"Loading settings from {settings_file}...")
new_settings = json.loads(open(settings_file, 'r').read())
2023-01-16 20:35:45 +01:00
for item in new_settings:
2023-02-23 17:28:30 +01:00
shared.settings[item] = new_settings[item]
2023-02-23 18:31:28 +01:00
def get_available_models():
2023-03-02 16:03:57 +01:00
if shared.args.flexgen:
return sorted([re.sub('-np$', '', item.name) for item in list(Path(f'{shared.args.model_dir}/').glob('*')) if item.name.endswith('-np')], key=str.lower)
2023-03-02 16:03:57 +01:00
else:
return sorted([re.sub('.pth$', '', item.name) for item in list(Path(f'{shared.args.model_dir}/').glob('*')) if not item.name.endswith(('.txt', '-np', '.pt', '.json'))], key=str.lower)
2023-02-23 18:31:28 +01:00
def get_available_presets():
return sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('presets').glob('*.txt'))), key=str.lower)
def get_available_prompts():
prompts = []
prompts += sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('prompts').glob('[0-9]*.txt'))), key=str.lower, reverse=True)
prompts += sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('prompts').glob('*.txt'))), key=str.lower)
prompts += ['None']
return prompts
2023-02-23 18:31:28 +01:00
def get_available_characters():
paths = (x for x in Path('characters').iterdir() if x.suffix in ('.json', '.yaml', '.yml'))
return ['None'] + sorted(set((k.stem for k in paths)), key=str.lower)
2023-02-23 18:31:28 +01:00
def get_available_extensions():
return sorted(set(map(lambda x : x.parts[1], Path('extensions').glob('*/script.py'))), key=str.lower)
def get_available_softprompts():
return ['None'] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('softprompts').glob('*.zip'))), key=str.lower)
2023-02-23 18:31:28 +01:00
2023-03-17 01:31:39 +01:00
def get_available_loras():
2023-03-28 07:16:40 +02:00
return ['None'] + sorted([item.name for item in list(Path(shared.args.lora_dir).glob('*')) if not item.name.endswith(('.txt', '-np', '.pt', '.json'))], key=str.lower)
2023-03-17 01:31:39 +01:00
def unload_model():
shared.model = shared.tokenizer = None
clear_torch_cache()
2023-02-08 02:08:21 +01:00
def load_model_wrapper(selected_model):
if selected_model != shared.model_name:
shared.model_name = selected_model
2023-02-12 13:36:27 +01:00
unload_model()
if selected_model != '':
shared.model, shared.tokenizer = load_model(shared.model_name)
2023-02-08 02:08:21 +01:00
2023-02-12 13:36:27 +01:00
return selected_model
2023-03-17 01:31:39 +01:00
def load_lora_wrapper(selected_lora):
add_lora_to_model(selected_lora)
return selected_lora
2023-03-17 01:31:39 +01:00
2023-02-08 02:08:21 +01:00
def load_preset_values(preset_menu, return_dict=False):
2023-02-08 04:19:20 +01:00
generate_params = {
2023-02-08 02:08:21 +01:00
'do_sample': True,
'temperature': 1,
'top_p': 1,
'typical_p': 1,
'repetition_penalty': 1,
'encoder_repetition_penalty': 1,
2023-02-08 02:08:21 +01:00
'top_k': 50,
2023-02-08 03:11:04 +01:00
'num_beams': 1,
'penalty_alpha': 0,
2023-02-08 03:11:04 +01:00
'min_length': 0,
'length_penalty': 1,
'no_repeat_ngram_size': 0,
'early_stopping': False,
2023-02-08 02:08:21 +01:00
}
with open(Path(f'presets/{preset_menu}.txt'), 'r') as infile:
preset = infile.read()
2023-02-11 18:54:29 +01:00
for i in preset.splitlines():
i = i.rstrip(',').strip().split('=')
2023-02-08 02:08:21 +01:00
if len(i) == 2 and i[0].strip() != 'tokens':
2023-02-08 04:19:20 +01:00
generate_params[i[0].strip()] = eval(i[1].strip())
2023-02-08 02:08:21 +01:00
2023-02-08 04:19:20 +01:00
generate_params['temperature'] = min(1.99, generate_params['temperature'])
2023-02-08 02:08:21 +01:00
if return_dict:
2023-02-08 04:19:20 +01:00
return generate_params
2023-02-08 02:08:21 +01:00
else:
return generate_params['do_sample'], generate_params['temperature'], generate_params['top_p'], generate_params['typical_p'], generate_params['repetition_penalty'], generate_params['encoder_repetition_penalty'], generate_params['top_k'], generate_params['min_length'], generate_params['no_repeat_ngram_size'], generate_params['num_beams'], generate_params['penalty_alpha'], generate_params['length_penalty'], generate_params['early_stopping']
2023-02-08 02:08:21 +01:00
2023-02-23 17:28:30 +01:00
def upload_soft_prompt(file):
with zipfile.ZipFile(io.BytesIO(file)) as zf:
zf.extract('meta.json')
j = json.loads(open('meta.json', 'r').read())
name = j['name']
Path('meta.json').unlink()
with open(Path(f'softprompts/{name}.zip'), 'wb') as f:
f.write(file)
return name
def create_model_and_preset_menus():
2023-02-08 02:08:21 +01:00
with gr.Row():
with gr.Column():
with gr.Row():
shared.gradio['model_menu'] = gr.Dropdown(choices=available_models, value=shared.model_name, label='Model')
ui.create_refresh_button(shared.gradio['model_menu'], lambda : None, lambda : {'choices': get_available_models()}, 'refresh-button')
2023-02-08 02:08:21 +01:00
with gr.Column():
with gr.Row():
2023-03-02 15:25:04 +01:00
shared.gradio['preset_menu'] = gr.Dropdown(choices=available_presets, value=default_preset if not shared.args.flexgen else 'Naive', label='Generation parameters preset')
ui.create_refresh_button(shared.gradio['preset_menu'], lambda : None, lambda : {'choices': get_available_presets()}, 'refresh-button')
2023-01-22 04:49:59 +01:00
def save_prompt(text):
fname = f"{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}.txt"
with open(Path(f'prompts/{fname}'), 'w', encoding='utf-8') as f:
f.write(text)
2023-03-27 17:43:37 +02:00
return f"Saved to prompts/{fname}"
def load_prompt(fname):
if fname in ['None', '']:
return ''
else:
with open(Path(f'prompts/{fname}.txt'), 'r', encoding='utf-8') as f:
text = f.read()
if text[-1] == '\n':
text = text[:-1]
return text
def create_prompt_menus():
with gr.Row():
with gr.Column():
with gr.Row():
shared.gradio['prompt_menu'] = gr.Dropdown(choices=get_available_prompts(), value='None', label='Prompt')
ui.create_refresh_button(shared.gradio['prompt_menu'], lambda : None, lambda : {'choices': get_available_prompts()}, 'refresh-button')
with gr.Column():
with gr.Column():
shared.gradio['save_prompt'] = gr.Button('Save prompt')
shared.gradio['status'] = gr.Markdown('Ready')
shared.gradio['prompt_menu'].change(load_prompt, [shared.gradio['prompt_menu']], [shared.gradio['textbox']], show_progress=False)
shared.gradio['save_prompt'].click(save_prompt, [shared.gradio['textbox']], [shared.gradio['status']], show_progress=False)
def create_settings_menus(default_preset):
generate_params = load_preset_values(default_preset if not shared.args.flexgen else 'Naive', return_dict=True)
with gr.Row():
with gr.Column():
create_model_and_preset_menus()
with gr.Column():
2023-03-31 17:22:07 +02:00
shared.gradio['seed'] = gr.Number(value=shared.settings['seed'], label='Seed (-1 for random)')
2023-03-15 17:24:54 +01:00
with gr.Row():
with gr.Column():
with gr.Box():
2023-03-18 00:19:04 +01:00
gr.Markdown('Custom generation parameters ([reference](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig))')
2023-03-15 17:24:54 +01:00
with gr.Row():
with gr.Column():
shared.gradio['temperature'] = gr.Slider(0.01, 1.99, value=generate_params['temperature'], step=0.01, label='temperature')
shared.gradio['top_p'] = gr.Slider(0.0,1.0,value=generate_params['top_p'],step=0.01,label='top_p')
shared.gradio['top_k'] = gr.Slider(0,200,value=generate_params['top_k'],step=1,label='top_k')
shared.gradio['typical_p'] = gr.Slider(0.0,1.0,value=generate_params['typical_p'],step=0.01,label='typical_p')
with gr.Column():
shared.gradio['repetition_penalty'] = gr.Slider(1.0, 1.5, value=generate_params['repetition_penalty'],step=0.01,label='repetition_penalty')
shared.gradio['encoder_repetition_penalty'] = gr.Slider(0.8, 1.5, value=generate_params['encoder_repetition_penalty'],step=0.01,label='encoder_repetition_penalty')
shared.gradio['no_repeat_ngram_size'] = gr.Slider(0, 20, step=1, value=generate_params['no_repeat_ngram_size'], label='no_repeat_ngram_size')
shared.gradio['min_length'] = gr.Slider(0, 2000, step=1, value=generate_params['min_length'] if shared.args.no_stream else 0, label='min_length', interactive=shared.args.no_stream)
shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')
with gr.Column():
with gr.Box():
gr.Markdown('Contrastive search')
shared.gradio['penalty_alpha'] = gr.Slider(0, 5, value=generate_params['penalty_alpha'], label='penalty_alpha')
with gr.Box():
gr.Markdown('Beam search (uses a lot of VRAM)')
with gr.Row():
with gr.Column():
shared.gradio['num_beams'] = gr.Slider(1, 20, step=1, value=generate_params['num_beams'], label='num_beams')
with gr.Column():
shared.gradio['length_penalty'] = gr.Slider(-5, 5, value=generate_params['length_penalty'], label='length_penalty')
shared.gradio['early_stopping'] = gr.Checkbox(value=generate_params['early_stopping'], label='early_stopping')
with gr.Row():
shared.gradio['lora_menu'] = gr.Dropdown(choices=available_loras, value=shared.lora_name, label='LoRA')
ui.create_refresh_button(shared.gradio['lora_menu'], lambda : None, lambda : {'choices': get_available_loras()}, 'refresh-button')
2023-03-15 17:24:54 +01:00
with gr.Accordion('Soft prompt', open=False):
with gr.Row():
shared.gradio['softprompts_menu'] = gr.Dropdown(choices=available_softprompts, value='None', label='Soft prompt')
ui.create_refresh_button(shared.gradio['softprompts_menu'], lambda : None, lambda : {'choices': get_available_softprompts()}, 'refresh-button')
gr.Markdown('Upload a soft prompt (.zip format):')
with gr.Row():
shared.gradio['upload_softprompt'] = gr.File(type='binary', file_types=['.zip'])
shared.gradio['model_menu'].change(load_model_wrapper, [shared.gradio['model_menu']], [shared.gradio['model_menu']], show_progress=True)
shared.gradio['preset_menu'].change(load_preset_values, [shared.gradio['preset_menu']], [shared.gradio[k] for k in ['do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']])
shared.gradio['lora_menu'].change(load_lora_wrapper, [shared.gradio['lora_menu']], [shared.gradio['lora_menu']], show_progress=True)
shared.gradio['softprompts_menu'].change(load_soft_prompt, [shared.gradio['softprompts_menu']], [shared.gradio['softprompts_menu']], show_progress=True)
shared.gradio['upload_softprompt'].upload(upload_soft_prompt, [shared.gradio['upload_softprompt']], [shared.gradio['softprompts_menu']])
2023-02-08 02:08:21 +01:00
def set_interface_arguments(interface_mode, extensions, bool_active):
modes = ["default", "notebook", "chat", "cai_chat"]
cmd_list = vars(shared.args)
bool_list = [k for k in cmd_list if type(cmd_list[k]) is bool and k not in modes]
#int_list = [k for k in cmd_list if type(k) is int]
shared.args.extensions = extensions
for k in modes[1:]:
exec(f"shared.args.{k} = False")
if interface_mode != "default":
exec(f"shared.args.{interface_mode} = True")
for k in bool_list:
exec(f"shared.args.{k} = False")
for k in bool_active:
exec(f"shared.args.{k} = True")
shared.need_restart = True
2023-01-22 04:49:59 +01:00
available_models = get_available_models()
available_presets = get_available_presets()
available_characters = get_available_characters()
available_softprompts = get_available_softprompts()
2023-03-17 01:31:39 +01:00
available_loras = get_available_loras()
2023-02-23 17:03:52 +01:00
2023-03-02 15:25:04 +01:00
# Default extensions
2023-02-23 17:03:52 +01:00
extensions_module.available_extensions = get_available_extensions()
2023-04-02 01:14:43 +02:00
if shared.is_chat():
2023-02-28 06:20:11 +01:00
for extension in shared.settings['chat_default_extensions']:
shared.args.extensions = shared.args.extensions or []
if extension not in shared.args.extensions:
shared.args.extensions.append(extension)
else:
for extension in shared.settings['default_extensions']:
shared.args.extensions = shared.args.extensions or []
if extension not in shared.args.extensions:
shared.args.extensions.append(extension)
2023-01-22 04:49:59 +01:00
2023-03-02 15:25:04 +01:00
# Default model
if shared.args.model is not None:
shared.model_name = shared.args.model
2023-01-06 23:56:44 +01:00
else:
2023-01-07 02:05:37 +01:00
if len(available_models) == 0:
print('No models are available! Please download at least one.')
2023-01-30 18:17:12 +01:00
sys.exit(0)
2023-01-06 23:56:44 +01:00
elif len(available_models) == 1:
i = 0
else:
print('The following models are available:\n')
2023-02-23 18:31:28 +01:00
for i, model in enumerate(available_models):
print(f'{i+1}. {model}')
print(f'\nWhich one do you want to load? 1-{len(available_models)}\n')
2023-01-06 23:56:44 +01:00
i = int(input())-1
2023-01-09 16:56:54 +01:00
print()
shared.model_name = available_models[i]
shared.model, shared.tokenizer = load_model(shared.model_name)
2023-03-17 15:24:52 +01:00
if shared.args.lora:
add_lora_to_model(shared.args.lora)
2023-01-06 23:56:44 +01:00
2023-03-02 15:25:04 +01:00
# Default UI settings
default_preset = shared.settings['presets'][next((k for k in shared.settings['presets'] if re.match(k.lower(), shared.model_name.lower())), 'default')]
if shared.lora_name != "None":
default_text = load_prompt(shared.settings['lora_prompts'][next((k for k in shared.settings['lora_prompts'] if re.match(k.lower(), shared.lora_name.lower())), 'default')])
else:
default_text = load_prompt(shared.settings['prompts'][next((k for k in shared.settings['prompts'] if re.match(k.lower(), shared.model_name.lower())), 'default')])
2023-03-09 13:44:08 +01:00
title ='Text generation web UI'
2023-03-16 03:29:56 +01:00
def create_interface():
2023-03-16 03:29:56 +01:00
gen_events = []
if shared.args.extensions is not None and len(shared.args.extensions) > 0:
extensions_module.load_extensions()
2023-04-02 01:14:43 +02:00
with gr.Blocks(css=ui.css if not shared.is_chat() else ui.css+ui.chat_css, analytics_enabled=False, title=title) as shared.gradio['interface']:
if shared.is_chat():
2023-04-02 23:05:21 +02:00
shared.gradio['Chat input'] = gr.State()
2023-03-16 03:29:56 +01:00
with gr.Tab("Text generation", elem_id="main"):
if shared.args.cai_chat:
2023-03-30 02:47:36 +02:00
shared.gradio['display'] = gr.HTML(value=generate_chat_html(shared.history['visible'], shared.settings['name1'], shared.settings['name2'], shared.character))
2023-03-16 03:29:56 +01:00
else:
2023-03-30 05:43:49 +02:00
shared.gradio['display'] = gr.Chatbot(value=shared.history['visible'], elem_id="gradio-chatbot")
2023-03-16 03:29:56 +01:00
shared.gradio['textbox'] = gr.Textbox(label='Input')
with gr.Row():
shared.gradio['Generate'] = gr.Button('Generate')
shared.gradio['Stop'] = gr.Button('Stop', elem_id="stop")
2023-03-16 03:29:56 +01:00
with gr.Row():
shared.gradio['Impersonate'] = gr.Button('Impersonate')
shared.gradio['Regenerate'] = gr.Button('Regenerate')
with gr.Row():
shared.gradio['Copy last reply'] = gr.Button('Copy last reply')
shared.gradio['Replace last reply'] = gr.Button('Replace last reply')
shared.gradio['Remove last'] = gr.Button('Remove last')
2023-03-16 03:29:56 +01:00
shared.gradio['Clear history'] = gr.Button('Clear history')
shared.gradio['Clear history-confirm'] = gr.Button('Confirm', variant="stop", visible=False)
shared.gradio['Clear history-cancel'] = gr.Button('Cancel', visible=False)
2023-01-15 22:16:46 +01:00
2023-03-16 03:29:56 +01:00
with gr.Tab("Character", elem_id="chat-settings"):
2023-03-30 02:47:36 +02:00
shared.gradio['name1'] = gr.Textbox(value=shared.settings['name1'], lines=1, label='Your name')
shared.gradio['name2'] = gr.Textbox(value=shared.settings['name2'], lines=1, label='Bot\'s name')
shared.gradio['context'] = gr.Textbox(value=shared.settings['context'], lines=5, label='Context')
2023-03-16 03:29:56 +01:00
with gr.Row():
shared.gradio['character_menu'] = gr.Dropdown(choices=available_characters, value='None', label='Character', elem_id='character-menu')
ui.create_refresh_button(shared.gradio['character_menu'], lambda : None, lambda : {'choices': get_available_characters()}, 'refresh-button')
with gr.Row():
with gr.Tab('Chat history'):
with gr.Row():
with gr.Column():
gr.Markdown('Upload')
shared.gradio['upload_chat_history'] = gr.File(type='binary', file_types=['.json', '.txt'])
with gr.Column():
gr.Markdown('Download')
shared.gradio['download'] = gr.File()
shared.gradio['download_button'] = gr.Button(value='Click me')
with gr.Tab('Upload character'):
with gr.Row():
with gr.Column():
gr.Markdown('1. Select the JSON file')
shared.gradio['upload_json'] = gr.File(type='binary', file_types=['.json'])
with gr.Column():
gr.Markdown('2. Select your character\'s profile picture (optional)')
shared.gradio['upload_img_bot'] = gr.File(type='binary', file_types=['image'])
shared.gradio['Upload character'] = gr.Button(value='Submit')
with gr.Tab('Upload your profile picture'):
shared.gradio['upload_img_me'] = gr.File(type='binary', file_types=['image'])
with gr.Tab('Upload TavernAI Character Card'):
shared.gradio['upload_img_tavern'] = gr.File(type='binary', file_types=['image'])
with gr.Tab("Parameters", elem_id="parameters"):
with gr.Box():
gr.Markdown("Chat parameters")
2023-02-16 00:55:32 +01:00
with gr.Row():
with gr.Column():
2023-03-16 03:29:56 +01:00
shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
shared.gradio['chat_prompt_size_slider'] = gr.Slider(minimum=shared.settings['chat_prompt_size_min'], maximum=shared.settings['chat_prompt_size_max'], step=1, label='Maximum prompt size in tokens', value=shared.settings['chat_prompt_size'])
2023-02-16 00:55:32 +01:00
with gr.Column():
2023-03-16 03:29:56 +01:00
shared.gradio['chat_generation_attempts'] = gr.Slider(minimum=shared.settings['chat_generation_attempts_min'], maximum=shared.settings['chat_generation_attempts_max'], value=shared.settings['chat_generation_attempts'], step=1, label='Generation attempts (for longer replies)')
2023-03-30 02:47:36 +02:00
shared.gradio['check'] = gr.Checkbox(value=shared.settings['stop_at_newline'], label='Stop generating at new line character?')
2023-03-16 03:29:56 +01:00
create_settings_menus(default_preset)
function_call = 'chat.cai_chatbot_wrapper' if shared.args.cai_chat else 'chat.chatbot_wrapper'
shared.input_params = [shared.gradio[k] for k in ['Chat input', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'seed', 'name1', 'name2', 'context', 'check', 'chat_prompt_size_slider', 'chat_generation_attempts']]
2023-03-16 03:29:56 +01:00
2023-04-02 23:05:21 +02:00
def set_chat_input(textbox):
return textbox, ""
gen_events.append(shared.gradio['Generate'].click(set_chat_input, shared.gradio['textbox'], [shared.gradio['Chat input'], shared.gradio['textbox']], show_progress=False))
2023-03-16 03:29:56 +01:00
gen_events.append(shared.gradio['Generate'].click(eval(function_call), shared.input_params, shared.gradio['display'], show_progress=shared.args.no_stream))
2023-04-02 23:05:21 +02:00
gen_events.append(shared.gradio['textbox'].submit(set_chat_input, shared.gradio['textbox'], [shared.gradio['Chat input'], shared.gradio['textbox']], show_progress=False))
2023-03-16 03:29:56 +01:00
gen_events.append(shared.gradio['textbox'].submit(eval(function_call), shared.input_params, shared.gradio['display'], show_progress=shared.args.no_stream))
gen_events.append(shared.gradio['Regenerate'].click(chat.regenerate_wrapper, shared.input_params, shared.gradio['display'], show_progress=shared.args.no_stream))
gen_events.append(shared.gradio['Impersonate'].click(chat.impersonate_wrapper, shared.input_params, shared.gradio['textbox'], show_progress=shared.args.no_stream))
2023-03-27 18:23:59 +02:00
shared.gradio['Stop'].click(stop_everything_event, [], [], queue=False, cancels=gen_events if shared.args.no_stream else None)
2023-03-16 03:29:56 +01:00
shared.gradio['Copy last reply'].click(chat.send_last_reply_to_input, [], shared.gradio['textbox'], show_progress=shared.args.no_stream)
shared.gradio['Replace last reply'].click(chat.replace_last_reply, [shared.gradio['textbox'], shared.gradio['name1'], shared.gradio['name2']], shared.gradio['display'], show_progress=shared.args.no_stream)
# Clear history with confirmation
clear_arr = [shared.gradio[k] for k in ['Clear history-confirm', 'Clear history', 'Clear history-cancel']]
shared.gradio['Clear history'].click(lambda :[gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)], None, clear_arr)
shared.gradio['Clear history-confirm'].click(lambda :[gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, clear_arr)
shared.gradio['Clear history-confirm'].click(chat.clear_chat_log, [shared.gradio['name1'], shared.gradio['name2']], shared.gradio['display'])
shared.gradio['Clear history-cancel'].click(lambda :[gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, clear_arr)
shared.gradio['Remove last'].click(chat.remove_last_message, [shared.gradio['name1'], shared.gradio['name2']], [shared.gradio['display'], shared.gradio['textbox']], show_progress=False)
shared.gradio['download_button'].click(chat.save_history, inputs=[], outputs=[shared.gradio['download']])
shared.gradio['Upload character'].click(chat.upload_character, [shared.gradio['upload_json'], shared.gradio['upload_img_bot']], [shared.gradio['character_menu']])
# Clearing stuff and saving the history
for i in ['Generate', 'Regenerate', 'Replace last reply']:
shared.gradio[i].click(lambda x: '', shared.gradio['textbox'], shared.gradio['textbox'], show_progress=False)
shared.gradio[i].click(lambda : chat.save_history(timestamp=False), [], [], show_progress=False)
shared.gradio['Clear history-confirm'].click(lambda : chat.save_history(timestamp=False), [], [], show_progress=False)
shared.gradio['textbox'].submit(lambda x: '', shared.gradio['textbox'], shared.gradio['textbox'], show_progress=False)
shared.gradio['textbox'].submit(lambda : chat.save_history(timestamp=False), [], [], show_progress=False)
shared.gradio['character_menu'].change(chat.load_character, [shared.gradio['character_menu'], shared.gradio['name1'], shared.gradio['name2']], [shared.gradio['name2'], shared.gradio['context'], shared.gradio['display']])
shared.gradio['upload_chat_history'].upload(chat.load_history, [shared.gradio['upload_chat_history'], shared.gradio['name1'], shared.gradio['name2']], [])
shared.gradio['upload_img_tavern'].upload(chat.upload_tavern_character, [shared.gradio['upload_img_tavern'], shared.gradio['name1'], shared.gradio['name2']], [shared.gradio['character_menu']])
shared.gradio['upload_img_me'].upload(chat.upload_your_profile_picture, [shared.gradio['upload_img_me']], [])
reload_func = chat.redraw_html if shared.args.cai_chat else lambda : shared.history['visible']
reload_inputs = [shared.gradio['name1'], shared.gradio['name2']] if shared.args.cai_chat else []
shared.gradio['upload_chat_history'].upload(reload_func, reload_inputs, [shared.gradio['display']])
shared.gradio['upload_img_me'].upload(reload_func, reload_inputs, [shared.gradio['display']])
shared.gradio['Stop'].click(reload_func, reload_inputs, [shared.gradio['display']])
shared.gradio['interface'].load(None, None, None, _js=f"() => {{{ui.main_js+ui.chat_js}}}")
2023-03-30 02:47:36 +02:00
shared.gradio['interface'].load(lambda : chat.load_default_history(shared.settings['name1'], shared.settings['name2']), None, None)
2023-03-16 03:29:56 +01:00
shared.gradio['interface'].load(reload_func, reload_inputs, [shared.gradio['display']], show_progress=True)
elif shared.args.notebook:
with gr.Tab("Text generation", elem_id="main"):
2023-03-15 22:56:26 +01:00
with gr.Row():
2023-03-27 03:20:30 +02:00
with gr.Column(scale=4):
with gr.Tab('Raw'):
2023-03-31 05:43:00 +02:00
shared.gradio['textbox'] = gr.Textbox(value=default_text, elem_id="textbox", lines=27)
2023-03-27 03:20:30 +02:00
with gr.Tab('Markdown'):
shared.gradio['markdown'] = gr.Markdown()
with gr.Tab('HTML'):
shared.gradio['html'] = gr.HTML()
2023-03-27 03:20:30 +02:00
with gr.Row():
with gr.Column():
with gr.Row():
shared.gradio['Generate'] = gr.Button('Generate')
shared.gradio['Stop'] = gr.Button('Stop')
with gr.Column():
pass
2023-03-27 03:20:30 +02:00
with gr.Column(scale=1):
2023-03-27 18:52:12 +02:00
gr.HTML('<div style="padding-bottom: 13px"></div>')
2023-03-27 03:20:30 +02:00
shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
create_prompt_menus()
2023-03-16 03:29:56 +01:00
with gr.Tab("Parameters", elem_id="parameters"):
create_settings_menus(default_preset)
2023-03-22 19:40:20 +01:00
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'seed']]
2023-03-16 03:29:56 +01:00
output_params = [shared.gradio[k] for k in ['textbox', 'markdown', 'html']]
gen_events.append(shared.gradio['Generate'].click(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream, api_name='textgen'))
gen_events.append(shared.gradio['textbox'].submit(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream))
2023-03-27 18:23:59 +02:00
shared.gradio['Stop'].click(stop_everything_event, [], [], queue=False, cancels=gen_events if shared.args.no_stream else None)
2023-03-16 03:29:56 +01:00
shared.gradio['interface'].load(None, None, None, _js=f"() => {{{ui.main_js}}}")
else:
with gr.Tab("Text generation", elem_id="main"):
with gr.Row():
with gr.Column():
2023-03-31 05:43:00 +02:00
shared.gradio['textbox'] = gr.Textbox(value=default_text, lines=21, label='Input')
2023-03-16 03:29:56 +01:00
shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
shared.gradio['Generate'] = gr.Button('Generate')
with gr.Row():
with gr.Column():
shared.gradio['Continue'] = gr.Button('Continue')
with gr.Column():
shared.gradio['Stop'] = gr.Button('Stop')
create_prompt_menus()
2023-01-19 02:44:47 +01:00
2023-03-16 03:29:56 +01:00
with gr.Column():
with gr.Tab('Raw'):
2023-03-31 05:43:00 +02:00
shared.gradio['output_textbox'] = gr.Textbox(lines=27, label='Output')
2023-03-16 03:29:56 +01:00
with gr.Tab('Markdown'):
shared.gradio['markdown'] = gr.Markdown()
with gr.Tab('HTML'):
shared.gradio['html'] = gr.HTML()
2023-03-16 03:29:56 +01:00
with gr.Tab("Parameters", elem_id="parameters"):
create_settings_menus(default_preset)
2023-03-22 19:40:20 +01:00
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'seed']]
2023-03-16 03:29:56 +01:00
output_params = [shared.gradio[k] for k in ['output_textbox', 'markdown', 'html']]
gen_events.append(shared.gradio['Generate'].click(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream, api_name='textgen'))
gen_events.append(shared.gradio['textbox'].submit(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream))
gen_events.append(shared.gradio['Continue'].click(generate_reply, [shared.gradio['output_textbox']] + shared.input_params[1:], output_params, show_progress=shared.args.no_stream))
2023-03-27 18:23:59 +02:00
shared.gradio['Stop'].click(stop_everything_event, [], [], queue=False, cancels=gen_events if shared.args.no_stream else None)
2023-03-16 03:29:56 +01:00
shared.gradio['interface'].load(None, None, None, _js=f"() => {{{ui.main_js}}}")
with gr.Tab("Training", elem_id="training-tab"):
training.create_train_interface()
2023-03-16 03:29:56 +01:00
with gr.Tab("Interface mode", elem_id="interface-mode"):
modes = ["default", "notebook", "chat", "cai_chat"]
current_mode = "default"
for mode in modes[1:]:
if eval(f"shared.args.{mode}"):
2023-03-16 03:29:56 +01:00
current_mode = mode
break
cmd_list = vars(shared.args)
bool_list = [k for k in cmd_list if type(cmd_list[k]) is bool and k not in modes]
bool_active = [k for k in bool_list if vars(shared.args)[k]]
#int_list = [k for k in cmd_list if type(k) is int]
2023-03-16 03:29:56 +01:00
2023-03-16 03:43:35 +01:00
gr.Markdown("*Experimental*")
shared.gradio['interface_modes_menu'] = gr.Dropdown(choices=modes, value=current_mode, label="Mode")
shared.gradio['extensions_menu'] = gr.CheckboxGroup(choices=get_available_extensions(), value=shared.args.extensions, label="Available extensions")
shared.gradio['bool_menu'] = gr.CheckboxGroup(choices=bool_list, value=bool_active, label="Boolean command-line flags")
shared.gradio['reset_interface'] = gr.Button("Apply and restart the interface", type="primary")
shared.gradio['reset_interface'].click(set_interface_arguments, [shared.gradio[k] for k in ['interface_modes_menu', 'extensions_menu', 'bool_menu']], None)
2023-03-28 18:25:58 +02:00
shared.gradio['reset_interface'].click(lambda : None, None, None, _js='() => {document.body.innerHTML=\'<h1 style="font-family:monospace;margin-top:20%;color:lightgray;text-align:center;">Reloading...</h1>\'; setTimeout(function(){location.reload()},2500); return []}')
2023-03-16 03:29:56 +01:00
if shared.args.extensions is not None:
extensions_module.create_extensions_block()
2023-03-28 04:29:52 +02:00
# Authentication
auth = None
if shared.args.gradio_auth_path is not None:
gradio_auth_creds = []
with open(shared.args.gradio_auth_path, 'r', encoding="utf8") as file:
for line in file.readlines():
gradio_auth_creds += [x.strip() for x in line.split(',') if x.strip()]
auth = [tuple(cred.split(':')) for cred in gradio_auth_creds]
2023-03-16 03:29:56 +01:00
# Launch the interface
shared.gradio['interface'].queue()
if shared.args.listen:
2023-03-28 04:29:52 +02:00
shared.gradio['interface'].launch(prevent_thread_lock=True, share=shared.args.share, server_name='0.0.0.0', server_port=shared.args.listen_port, inbrowser=shared.args.auto_launch, auth=auth)
2023-03-16 00:44:34 +01:00
else:
2023-03-28 04:29:52 +02:00
shared.gradio['interface'].launch(prevent_thread_lock=True, share=shared.args.share, server_port=shared.args.listen_port, inbrowser=shared.args.auto_launch, auth=auth)
2023-03-16 03:29:56 +01:00
create_interface()
2023-02-08 02:08:21 +01:00
while True:
time.sleep(0.5)
2023-03-16 03:29:56 +01:00
if shared.need_restart:
shared.need_restart = False
shared.gradio['interface'].close()
create_interface()