2023-05-09 16:12:53 +02:00
|
|
|
import copy
|
2023-02-28 04:09:11 +01:00
|
|
|
import os
|
2023-02-28 03:50:16 +01:00
|
|
|
from pathlib import Path
|
2023-02-28 04:09:11 +01:00
|
|
|
|
2023-02-28 03:50:16 +01:00
|
|
|
import numpy as np
|
2023-03-06 12:45:49 +01:00
|
|
|
from tokenizers import Tokenizer
|
2023-02-28 04:09:11 +01:00
|
|
|
|
|
|
|
import modules.shared as shared
|
2023-03-08 06:50:49 +01:00
|
|
|
from modules.callbacks import Iteratorize
|
2023-02-28 04:09:11 +01:00
|
|
|
|
2023-02-28 03:50:16 +01:00
|
|
|
np.set_printoptions(precision=4, suppress=True, linewidth=200)
|
|
|
|
|
|
|
|
os.environ['RWKV_JIT_ON'] = '1'
|
2023-04-07 05:15:45 +02:00
|
|
|
os.environ["RWKV_CUDA_ON"] = '1' if shared.args.rwkv_cuda_on else '0' # use CUDA kernel for seq mode (much faster)
|
2023-02-28 03:50:16 +01:00
|
|
|
|
|
|
|
from rwkv.model import RWKV
|
|
|
|
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
|
|
|
|
2023-03-01 16:18:17 +01:00
|
|
|
|
2023-03-01 16:08:55 +01:00
|
|
|
class RWKVModel:
|
|
|
|
def __init__(self):
|
|
|
|
pass
|
2023-02-28 03:50:16 +01:00
|
|
|
|
2023-03-01 16:08:55 +01:00
|
|
|
@classmethod
|
|
|
|
def from_pretrained(self, path, dtype="fp16", device="cuda"):
|
|
|
|
tokenizer_path = Path(f"{path.parent}/20B_tokenizer.json")
|
2023-03-02 00:02:48 +01:00
|
|
|
if shared.args.rwkv_strategy is None:
|
2023-03-13 04:08:01 +01:00
|
|
|
model = RWKV(model=str(path), strategy=f'{device} {dtype}')
|
2023-03-02 00:02:48 +01:00
|
|
|
else:
|
2023-03-13 04:08:01 +01:00
|
|
|
model = RWKV(model=str(path), strategy=shared.args.rwkv_strategy)
|
2023-02-28 03:50:16 +01:00
|
|
|
|
2023-05-10 03:49:39 +02:00
|
|
|
pipeline = PIPELINE(model, str(tokenizer_path))
|
2023-03-01 16:08:55 +01:00
|
|
|
result = self()
|
2023-03-01 16:33:09 +01:00
|
|
|
result.pipeline = pipeline
|
2023-05-09 16:12:53 +02:00
|
|
|
result.model = model
|
|
|
|
result.cached_context = ""
|
|
|
|
result.cached_model_state = None
|
|
|
|
result.cached_output_logits = None
|
2023-03-01 16:08:55 +01:00
|
|
|
return result
|
|
|
|
|
2023-05-09 03:55:41 +02:00
|
|
|
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=None, alpha_frequency=0.1, alpha_presence=0.1, token_ban=None, token_stop=None, callback=None):
|
2023-03-01 16:16:11 +01:00
|
|
|
args = PIPELINE_ARGS(
|
2023-04-07 05:15:45 +02:00
|
|
|
temperature=temperature,
|
|
|
|
top_p=top_p,
|
|
|
|
top_k=top_k,
|
|
|
|
alpha_frequency=alpha_frequency, # Frequency Penalty (as in GPT-3)
|
|
|
|
alpha_presence=alpha_presence, # Presence Penalty (as in GPT-3)
|
2023-05-09 03:55:41 +02:00
|
|
|
token_ban=token_ban or [0], # ban the generation of some tokens
|
|
|
|
token_stop=token_stop or []
|
2023-03-01 16:16:11 +01:00
|
|
|
)
|
|
|
|
|
2023-05-09 16:12:53 +02:00
|
|
|
if self.cached_context != "":
|
|
|
|
if context.startswith(self.cached_context):
|
|
|
|
context = context[len(self.cached_context):]
|
|
|
|
else:
|
|
|
|
self.cached_context = ""
|
|
|
|
self.cached_model_state = None
|
|
|
|
self.cached_output_logits = None
|
|
|
|
|
|
|
|
# out = self.pipeline.generate(context, token_count=token_count, args=args, callback=callback)
|
|
|
|
out = self.generate_from_cached_state(context, token_count=token_count, args=args, callback=callback)
|
|
|
|
return out
|
2023-03-06 12:45:49 +01:00
|
|
|
|
2023-03-07 22:17:56 +01:00
|
|
|
def generate_with_streaming(self, **kwargs):
|
2023-03-12 06:04:28 +01:00
|
|
|
with Iteratorize(self.generate, kwargs, callback=None) as generator:
|
2023-03-24 01:38:20 +01:00
|
|
|
reply = ''
|
2023-03-12 06:04:28 +01:00
|
|
|
for token in generator:
|
|
|
|
reply += token
|
|
|
|
yield reply
|
2023-03-07 22:17:56 +01:00
|
|
|
|
2023-05-09 16:12:53 +02:00
|
|
|
# Similar to the PIPELINE.generate, but lets us maintain the cached_model_state
|
|
|
|
def generate_from_cached_state(self, ctx="", token_count=20, args=None, callback=None):
|
|
|
|
all_tokens = []
|
|
|
|
out_str = ''
|
|
|
|
occurrence = {}
|
|
|
|
state = copy.deepcopy(self.cached_model_state) if self.cached_model_state is not None else None
|
|
|
|
|
|
|
|
# if we ended up with an empty context, just reuse the cached logits
|
|
|
|
# this can happen if a user undoes a message and then sends the exact message again
|
|
|
|
# in that case the full context ends up being the same as the cached_context, so the remaining context is empty.
|
|
|
|
if ctx == "":
|
|
|
|
out = self.cached_output_logits
|
|
|
|
|
|
|
|
for i in range(token_count):
|
|
|
|
# forward
|
|
|
|
tokens = self.pipeline.encode(ctx) if i == 0 else [token]
|
|
|
|
while len(tokens) > 0:
|
|
|
|
out, state = self.model.forward(tokens[:args.chunk_len], state)
|
|
|
|
tokens = tokens[args.chunk_len:]
|
|
|
|
|
|
|
|
# cache the model state after scanning the context
|
2023-05-10 03:49:39 +02:00
|
|
|
# we don't cache the state after processing our own generated tokens because
|
|
|
|
# the output string might be post-processed arbitrarily. Therefore, what's fed into the model
|
2023-05-09 16:12:53 +02:00
|
|
|
# on the next round of chat might be slightly different what what it output on the previous round
|
|
|
|
if i == 0:
|
|
|
|
self.cached_context += ctx
|
|
|
|
self.cached_model_state = copy.deepcopy(state)
|
|
|
|
self.cached_output_logits = copy.deepcopy(out)
|
2023-05-10 03:49:39 +02:00
|
|
|
|
2023-05-09 16:12:53 +02:00
|
|
|
# adjust probabilities
|
|
|
|
for n in args.token_ban:
|
|
|
|
out[n] = -float('inf')
|
2023-05-10 03:49:39 +02:00
|
|
|
|
2023-05-09 16:12:53 +02:00
|
|
|
for n in occurrence:
|
|
|
|
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
2023-05-10 03:49:39 +02:00
|
|
|
|
2023-05-09 16:12:53 +02:00
|
|
|
# sampler
|
|
|
|
token = self.pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p, top_k=args.top_k)
|
|
|
|
if token in args.token_stop:
|
|
|
|
break
|
2023-05-10 03:49:39 +02:00
|
|
|
|
2023-05-09 16:12:53 +02:00
|
|
|
all_tokens += [token]
|
|
|
|
if token not in occurrence:
|
|
|
|
occurrence[token] = 1
|
|
|
|
else:
|
|
|
|
occurrence[token] += 1
|
2023-05-10 03:49:39 +02:00
|
|
|
|
2023-05-09 16:12:53 +02:00
|
|
|
# output
|
|
|
|
tmp = self.pipeline.decode([token])
|
2023-05-10 03:49:39 +02:00
|
|
|
if '\ufffd' not in tmp: # is valid utf-8 string?
|
2023-05-09 16:12:53 +02:00
|
|
|
if callback:
|
|
|
|
callback(tmp)
|
2023-05-10 03:49:39 +02:00
|
|
|
|
2023-05-09 16:12:53 +02:00
|
|
|
out_str += tmp
|
|
|
|
|
|
|
|
return out_str
|
|
|
|
|
2023-04-07 05:15:45 +02:00
|
|
|
|
2023-03-06 12:45:49 +01:00
|
|
|
class RWKVTokenizer:
|
|
|
|
def __init__(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_pretrained(self, path):
|
|
|
|
tokenizer_path = path / "20B_tokenizer.json"
|
2023-03-13 04:08:01 +01:00
|
|
|
tokenizer = Tokenizer.from_file(str(tokenizer_path))
|
2023-03-06 12:45:49 +01:00
|
|
|
result = self()
|
|
|
|
result.tokenizer = tokenizer
|
|
|
|
return result
|
|
|
|
|
|
|
|
def encode(self, prompt):
|
|
|
|
return self.tokenizer.encode(prompt).ids
|
|
|
|
|
|
|
|
def decode(self, ids):
|
|
|
|
return self.tokenizer.decode(ids)
|