text-generation-webui/modules/training.py

269 lines
14 KiB
Python
Raw Normal View History

2023-03-28 02:24:39 +02:00
import json
import sys
import threading
import time
2023-03-25 20:08:26 +01:00
from pathlib import Path
2023-03-28 02:24:39 +02:00
2023-03-25 20:08:26 +01:00
import gradio as gr
2023-03-28 02:24:39 +02:00
import torch
2023-03-25 20:08:26 +01:00
import transformers
from datasets import Dataset, load_dataset
2023-03-28 02:24:39 +02:00
from peft import (LoraConfig, get_peft_model, get_peft_model_state_dict,
prepare_model_for_int8_training)
from modules import shared, ui
2023-03-25 20:08:26 +01:00
2023-03-27 19:43:01 +02:00
WANT_INTERRUPT = False
2023-03-27 19:25:08 +02:00
CURRENT_STEPS = 0
MAX_STEPS = 0
2023-03-27 19:43:01 +02:00
CURRENT_GRADIENT_ACCUM = 1
2023-03-27 19:25:08 +02:00
def get_dataset(path: str, ext: str):
return ['None'] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path(path).glob(f'*.{ext}'))), key=str.lower)
2023-03-25 20:08:26 +01:00
def create_train_interface():
with gr.Tab('Train LoRA', elem_id='lora-train-tab'):
lora_name = gr.Textbox(label="Name", info="The name of your new LoRA file")
with gr.Row():
# TODO: Implement multi-device support.
micro_batch_size = gr.Slider(label='Micro Batch Size', value=4, minimum=1, maximum=128, step=1, info='Per-device batch size (NOTE: multiple devices not yet implemented). Increasing this will increase VRAM usage.')
batch_size = gr.Slider(label='Batch Size', value=128, minimum=0, maximum=1024, step=4, info='Global batch size. The two batch sizes together determine gradient accumulation (gradientAccum = batch / microBatch). Higher gradient accum values lead to better quality training.')
with gr.Row():
2023-03-28 03:39:06 +02:00
epochs = gr.Number(label='Epochs', value=3, info='Number of times every entry in the dataset should be fed into training. So 1 means feed each item in once, 5 means feed it in five times, etc.')
learning_rate = gr.Textbox(label='Learning Rate', value='3e-4', info='Learning rate, in scientific notation. 3e-4 is a good starting base point. 1e-2 is extremely high, 1e-6 is extremely low.')
2023-03-25 20:08:26 +01:00
# TODO: What is the actual maximum rank? Likely distinct per model. This might be better to somehow be on a log scale.
2023-03-28 07:29:23 +02:00
lora_rank = gr.Slider(label='LoRA Rank', value=32, minimum=0, maximum=1024, step=4, info='LoRA Rank, or dimension count. Higher values produce a larger file with better control over the model\'s content. Smaller values produce a smaller file with less overall control. Small values like 4 or 8 are great for stylistic guidance, high values like 128 or 256 are good for teaching content upgrades. Higher ranks also require higher VRAM.')
lora_alpha = gr.Slider(label='LoRA Alpha', value=64, minimum=0, maximum=2048, step=4, info='LoRA Alpha. This divided by the rank becomes the scaling of the LoRA. Higher means stronger. A good standard value is twice your Rank.')
2023-03-25 20:48:35 +01:00
# TODO: Better explain what this does, in terms of real world effect especially.
lora_dropout = gr.Slider(label='LoRA Dropout', minimum=0.0, maximum=1.0, step=0.025, value=0.05, info='Percentage probability for dropout of LoRA layers.')
cutoff_len = gr.Slider(label='Cutoff Length', minimum=0, maximum=2048, value=256, step=32, info='Cutoff length for text input. Essentially, how long of a line of text to feed in at a time. Higher values require drastically more VRAM.')
with gr.Tab(label="Formatted Dataset"):
with gr.Row():
dataset = gr.Dropdown(choices=get_dataset('training/datasets', 'json'), value='None', label='Dataset', info='The dataset file to use for training.')
ui.create_refresh_button(dataset, lambda : None, lambda : {'choices': get_dataset('training/datasets', 'json')}, 'refresh-button')
eval_dataset = gr.Dropdown(choices=get_dataset('training/datasets', 'json'), value='None', label='Evaluation Dataset', info='The dataset file used to evaluate the model after training.')
ui.create_refresh_button(eval_dataset, lambda : None, lambda : {'choices': get_dataset('training/datasets', 'json')}, 'refresh-button')
format = gr.Dropdown(choices=get_dataset('training/formats', 'json'), value='None', label='Data Format', info='The format file used to decide how to format the dataset input.')
ui.create_refresh_button(format, lambda : None, lambda : {'choices': get_dataset('training/formats', 'json')}, 'refresh-button')
with gr.Tab(label="Raw Text File"):
with gr.Row():
raw_text_file = gr.Dropdown(choices=get_dataset('training/datasets', 'txt'), value='None', label='Text File', info='The raw text file to use for training.')
ui.create_refresh_button(raw_text_file, lambda : None, lambda : {'choices': get_dataset('training/datasets', 'txt')}, 'refresh-button')
2023-03-28 07:29:23 +02:00
overlap_len = gr.Slider(label='Overlap Length', minimum=0,maximum=512, value=128, step=16, info='Overlap length - ie how many tokens from the prior chunk of text to include into the next chunk. (The chunks themselves will be of a size determined by Cutoff Length above). Setting overlap to exactly half the cutoff length may be ideal.')
2023-03-27 19:43:01 +02:00
with gr.Row():
start_button = gr.Button("Start LoRA Training")
stop_button = gr.Button("Interrupt")
2023-03-28 02:24:39 +02:00
output = gr.Markdown(value="Ready")
start_button.click(do_train, [lora_name, micro_batch_size, batch_size, epochs, learning_rate, lora_rank, lora_alpha, lora_dropout, cutoff_len, dataset, eval_dataset, format, raw_text_file, overlap_len], [output])
2023-03-28 03:19:06 +02:00
stop_button.click(do_interrupt, [], [], cancels=[], queue=False)
2023-03-27 19:43:01 +02:00
2023-03-28 03:19:06 +02:00
def do_interrupt():
2023-03-27 19:43:01 +02:00
global WANT_INTERRUPT
WANT_INTERRUPT = True
2023-03-25 20:08:26 +01:00
2023-03-27 19:25:08 +02:00
class Callbacks(transformers.TrainerCallback):
def on_step_begin(self, args: transformers.TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs):
global CURRENT_STEPS, MAX_STEPS
2023-03-27 19:43:01 +02:00
CURRENT_STEPS = state.global_step * CURRENT_GRADIENT_ACCUM
MAX_STEPS = state.max_steps * CURRENT_GRADIENT_ACCUM
if WANT_INTERRUPT:
control.should_epoch_stop = True
control.should_training_stop = True
def on_substep_end(self, args: transformers.TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs):
global CURRENT_STEPS
CURRENT_STEPS += 1
if WANT_INTERRUPT:
control.should_epoch_stop = True
control.should_training_stop = True
2023-03-27 19:25:08 +02:00
2023-03-28 03:19:06 +02:00
def clean_path(base_path: str, path: str):
2023-03-25 20:08:26 +01:00
""""Strips unusual symbols and forcibly builds a path as relative to the intended directory."""
# TODO: Probably could do with a security audit to guarantee there's no ways this can be bypassed to target an unwanted path.
# Or swap it to a strict whitelist of [a-zA-Z_0-9]
path = path.replace('\\', '/').replace('..', '_')
if base_path is None:
2023-03-25 20:08:26 +01:00
return path
return f'{Path(base_path).absolute()}/{path}'
2023-03-25 20:08:26 +01:00
def do_train(lora_name: str, micro_batch_size: int, batch_size: int, epochs: int, learning_rate: str, lora_rank: int,
lora_alpha: int, lora_dropout: float, cutoff_len: int, dataset: str, eval_dataset: str, format: str, raw_text_file: str, overlap_len: int):
2023-03-27 19:43:01 +02:00
global WANT_INTERRUPT, CURRENT_STEPS, MAX_STEPS, CURRENT_GRADIENT_ACCUM
WANT_INTERRUPT = False
2023-03-27 19:25:08 +02:00
CURRENT_STEPS = 0
MAX_STEPS = 0
2023-03-27 19:25:08 +02:00
# == Input validation / processing ==
yield "Prepping..."
2023-03-28 05:04:16 +02:00
lora_name = f"{shared.args.lora_dir}/{clean_path(None, lora_name)}"
actual_lr = float(learning_rate)
if cutoff_len <= 0 or micro_batch_size <= 0 or batch_size <= 0 or actual_lr <= 0 or lora_rank <= 0 or lora_alpha <= 0:
yield f"Cannot input zeroes."
return
gradient_accumulation_steps = batch_size // micro_batch_size
CURRENT_GRADIENT_ACCUM = gradient_accumulation_steps
2023-03-25 20:57:36 +01:00
shared.tokenizer.pad_token = 0
shared.tokenizer.padding_side = "left"
2023-03-25 20:08:26 +01:00
def tokenize(prompt):
result = shared.tokenizer(prompt, truncation=True, max_length=cutoff_len + 1, padding="max_length")
2023-03-25 20:08:26 +01:00
return {
"input_ids": result["input_ids"][:-1],
"attention_mask": result["attention_mask"][:-1],
}
# == Prep the dataset, format, etc ==
2023-03-29 16:48:17 +02:00
if raw_text_file not in ['None', '']:
print("Loading raw text file dataset...")
with open(clean_path('training/datasets', f'{raw_text_file}.txt'), 'r') as file:
raw_text = file.read()
tokens = shared.tokenizer.encode(raw_text)
del raw_text # Note: could be a gig for a large dataset, so delete redundant data as we go to be safe on RAM
tokens = list(split_chunks(tokens, cutoff_len - overlap_len))
for i in range(1, len(tokens)):
tokens[i] = tokens[i - 1][-overlap_len:] + tokens[i]
text_chunks = [shared.tokenizer.decode(x) for x in tokens]
del tokens
data = Dataset.from_list([tokenize(x) for x in text_chunks])
train_data = data.shuffle()
eval_data = None
del text_chunks
else:
2023-03-29 16:48:17 +02:00
if dataset in ['None', '']:
yield "**Missing dataset choice input, cannot continue.**"
return
2023-03-29 16:48:17 +02:00
if format in ['None', '']:
yield "**Missing format choice input, cannot continue.**"
return
2023-03-29 16:48:17 +02:00
with open(clean_path('training/formats', f'{format}.json'), 'r') as formatFile:
format_data: dict[str, str] = json.load(formatFile)
def generate_prompt(data_point: dict[str, str]):
for options, data in format_data.items():
if set(options.split(',')) == set(x[0] for x in data_point.items() if len(x[1].strip()) > 0):
for key, val in data_point.items():
data = data.replace(f'%{key}%', val)
return data
raise RuntimeError(f'Data-point "{data_point}" has no keyset match within format "{list(format_data.keys())}"')
def generate_and_tokenize_prompt(data_point):
prompt = generate_prompt(data_point)
return tokenize(prompt)
print("Loading JSON datasets...")
data = load_dataset("json", data_files=clean_path('training/datasets', f'{dataset}.json'))
train_data = data['train'].shuffle().map(generate_and_tokenize_prompt)
if eval_dataset == 'None':
eval_data = None
else:
eval_data = load_dataset("json", data_files=clean_path('training/datasets', f'{eval_dataset}.json'))
eval_data = eval_data['train'].shuffle().map(generate_and_tokenize_prompt)
2023-03-27 19:25:08 +02:00
# == Start prepping the model itself ==
2023-03-25 20:57:36 +01:00
if not hasattr(shared.model, 'lm_head') or hasattr(shared.model.lm_head, 'weight'):
print("Getting model ready...")
2023-03-25 20:57:36 +01:00
prepare_model_for_int8_training(shared.model)
print("Prepping for training...")
2023-03-25 20:08:26 +01:00
config = LoraConfig(
r=lora_rank,
lora_alpha=lora_alpha,
2023-03-25 20:08:26 +01:00
# TODO: Should target_modules be configurable?
target_modules=[ "q_proj", "v_proj" ],
lora_dropout=lora_dropout,
2023-03-25 20:08:26 +01:00
bias="none",
task_type="CAUSAL_LM"
)
lora_model = get_peft_model(shared.model, config)
2023-03-25 20:08:26 +01:00
trainer = transformers.Trainer(
model=lora_model,
2023-03-25 20:08:26 +01:00
train_dataset=train_data,
eval_dataset=eval_data,
2023-03-25 20:08:26 +01:00
args=transformers.TrainingArguments(
per_device_train_batch_size=micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
2023-03-25 20:08:26 +01:00
# TODO: Should more of these be configurable? Probably.
warmup_steps=100,
num_train_epochs=epochs,
learning_rate=actual_lr,
2023-03-25 20:08:26 +01:00
fp16=True,
logging_steps=20,
evaluation_strategy="steps" if eval_data is not None else "no",
2023-03-25 20:08:26 +01:00
save_strategy="steps",
eval_steps=200 if eval_data is not None else None,
2023-03-25 20:08:26 +01:00
save_steps=200,
output_dir=lora_name,
2023-03-25 20:08:26 +01:00
save_total_limit=3,
load_best_model_at_end=True if eval_data is not None else False,
2023-03-25 20:08:26 +01:00
# TODO: Enable multi-device support
ddp_find_unused_parameters=None
2023-03-25 20:08:26 +01:00
),
2023-03-25 20:57:36 +01:00
data_collator=transformers.DataCollatorForLanguageModeling(shared.tokenizer, mlm=False),
2023-03-27 19:25:08 +02:00
callbacks=list([Callbacks()])
2023-03-25 20:08:26 +01:00
)
lora_model.config.use_cache = False
old_state_dict = lora_model.state_dict
lora_model.state_dict = (
2023-03-25 20:08:26 +01:00
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
).__get__(lora_model, type(lora_model))
2023-03-25 20:08:26 +01:00
if torch.__version__ >= "2" and sys.platform != "win32":
lora_model = torch.compile(lora_model)
2023-03-28 02:24:39 +02:00
2023-03-27 19:25:08 +02:00
# == Main run and monitor loop ==
# TODO: save/load checkpoints to resume from?
print("Starting training...")
2023-03-27 19:25:08 +02:00
yield "Starting..."
2023-03-28 02:24:39 +02:00
2023-03-27 19:25:08 +02:00
def threadedRun():
trainer.train()
2023-03-28 02:24:39 +02:00
2023-03-27 19:25:08 +02:00
thread = threading.Thread(target=threadedRun)
thread.start()
lastStep = 0
startTime = time.perf_counter()
2023-03-28 02:24:39 +02:00
2023-03-27 19:25:08 +02:00
while thread.is_alive():
time.sleep(0.5)
2023-03-27 19:43:01 +02:00
if WANT_INTERRUPT:
yield "Interrupting, please wait... *(Run will stop after the current training step completes.)*"
elif CURRENT_STEPS != lastStep:
2023-03-27 19:25:08 +02:00
lastStep = CURRENT_STEPS
timeElapsed = time.perf_counter() - startTime
if timeElapsed <= 0:
timerInfo = ""
2023-03-27 19:57:27 +02:00
totalTimeEstimate = 999
2023-03-27 19:25:08 +02:00
else:
its = CURRENT_STEPS / timeElapsed
if its > 1:
timerInfo = f"`{its:.2f}` it/s"
else:
timerInfo = f"`{1.0/its:.2f}` s/it"
2023-03-27 19:57:27 +02:00
totalTimeEstimate = (1.0/its) * (MAX_STEPS)
yield f"Running... **{CURRENT_STEPS}** / **{MAX_STEPS}** ... {timerInfo}, `{timeElapsed:.0f}`/`{totalTimeEstimate:.0f}` seconds"
2023-03-28 02:24:39 +02:00
print("Training complete, saving...")
lora_model.save_pretrained(lora_name)
2023-03-28 02:24:39 +02:00
2023-03-27 19:43:01 +02:00
if WANT_INTERRUPT:
print("Training interrupted.")
yield f"Interrupted. Incomplete LoRA saved to `{lora_name}`"
2023-03-27 19:43:01 +02:00
else:
print("Training complete!")
yield f"Done! LoRA saved to `{lora_name}`"
def split_chunks(arr, step):
for i in range(0, len(arr), step):
yield arr[i:i + step]