2023-07-11 17:50:08 -04:00
|
|
|
import os
|
|
|
|
import time
|
2023-09-15 20:11:16 -07:00
|
|
|
|
2023-07-11 17:50:08 -04:00
|
|
|
import requests
|
2023-11-16 18:03:06 -08:00
|
|
|
|
2023-09-15 20:11:16 -07:00
|
|
|
from extensions.openai.errors import ServiceUnavailableError
|
2023-07-11 17:50:08 -04:00
|
|
|
|
2023-07-12 11:33:25 -07:00
|
|
|
|
2023-07-11 17:50:08 -04:00
|
|
|
def generations(prompt: str, size: str, response_format: str, n: int):
|
|
|
|
# Stable Diffusion callout wrapper for txt2img
|
|
|
|
# Low effort implementation for compatibility. With only "prompt" being passed and assuming DALL-E
|
|
|
|
# the results will be limited and likely poor. SD has hundreds of models and dozens of settings.
|
|
|
|
# If you want high quality tailored results you should just use the Stable Diffusion API directly.
|
2023-07-24 10:28:12 -04:00
|
|
|
# it's too general an API to try and shape the result with specific tags like negative prompts
|
|
|
|
# or "masterpiece", etc. SD configuration is beyond the scope of this API.
|
2023-07-11 17:50:08 -04:00
|
|
|
# At this point I will not add the edits and variations endpoints (ie. img2img) because they
|
|
|
|
# require changing the form data handling to accept multipart form data, also to properly support
|
|
|
|
# url return types will require file management and a web serving files... Perhaps later!
|
2023-09-15 20:11:16 -07:00
|
|
|
base_model_size = 512 if 'SD_BASE_MODEL_SIZE' not in os.environ else int(os.environ.get('SD_BASE_MODEL_SIZE', 512))
|
2023-07-24 10:28:12 -04:00
|
|
|
sd_defaults = {
|
|
|
|
'sampler_name': 'DPM++ 2M Karras', # vast improvement
|
|
|
|
'steps': 30,
|
|
|
|
}
|
2023-07-11 17:50:08 -04:00
|
|
|
|
2023-07-12 11:33:25 -07:00
|
|
|
width, height = [int(x) for x in size.split('x')] # ignore the restrictions on size
|
2023-07-11 17:50:08 -04:00
|
|
|
|
|
|
|
# to hack on better generation, edit default payload.
|
|
|
|
payload = {
|
|
|
|
'prompt': prompt, # ignore prompt limit of 1000 characters
|
|
|
|
'width': width,
|
|
|
|
'height': height,
|
|
|
|
'batch_size': n,
|
|
|
|
}
|
2023-07-24 10:28:12 -04:00
|
|
|
payload.update(sd_defaults)
|
|
|
|
|
|
|
|
scale = min(width, height) / base_model_size
|
|
|
|
if scale >= 1.2:
|
|
|
|
# for better performance with the default size (1024), and larger res.
|
|
|
|
scaler = {
|
|
|
|
'width': width // scale,
|
|
|
|
'height': height // scale,
|
|
|
|
'hr_scale': scale,
|
|
|
|
'enable_hr': True,
|
|
|
|
'hr_upscaler': 'Latent',
|
|
|
|
'denoising_strength': 0.68,
|
|
|
|
}
|
|
|
|
payload.update(scaler)
|
2023-07-11 17:50:08 -04:00
|
|
|
|
|
|
|
resp = {
|
|
|
|
'created': int(time.time()),
|
|
|
|
'data': []
|
|
|
|
}
|
2023-09-18 09:39:29 +08:00
|
|
|
from extensions.openai.script import params
|
2023-11-06 02:38:29 -03:00
|
|
|
|
2023-07-11 17:50:08 -04:00
|
|
|
# TODO: support SD_WEBUI_AUTH username:password pair.
|
2023-09-18 09:39:29 +08:00
|
|
|
sd_url = f"{os.environ.get('SD_WEBUI_URL', params.get('sd_webui_url', ''))}/sdapi/v1/txt2img"
|
2023-07-11 17:50:08 -04:00
|
|
|
|
|
|
|
response = requests.post(url=sd_url, json=payload)
|
|
|
|
r = response.json()
|
|
|
|
if response.status_code != 200 or 'images' not in r:
|
2023-07-24 10:28:12 -04:00
|
|
|
print(r)
|
2023-09-15 20:11:16 -07:00
|
|
|
raise ServiceUnavailableError(r.get('error', 'Unknown error calling Stable Diffusion'), code=response.status_code, internal_message=r.get('errors', None))
|
2023-07-11 17:50:08 -04:00
|
|
|
# r['parameters']...
|
|
|
|
for b64_json in r['images']:
|
|
|
|
if response_format == 'b64_json':
|
|
|
|
resp['data'].extend([{'b64_json': b64_json}])
|
|
|
|
else:
|
|
|
|
resp['data'].extend([{'url': f'data:image/png;base64,{b64_json}'}]) # yeah it's lazy. requests.get() will not work with this
|
|
|
|
|
2023-07-12 11:33:25 -07:00
|
|
|
return resp
|