433 lines
18 KiB
Python
Raw Normal View History

2023-09-17 10:09:31 -04:00
from functools import partial
import torch
import transformers
import math
from torch.optim.lr_scheduler import LambdaLR
from peft import (
PeftModel,
)
RED = "\033[91m"
YELLOW = "\033[93m"
GREEN = "\033[92m"
RESET = "\033[0m"
2023-09-17 10:09:31 -04:00
last_print_label = ''
custom_scheduler_params = {'trigger_loss': 0.0, 'ramp_down_ratio':1.0, 'current_loss': 0.0,'dynamic_scheduler_stop': False, 'calc_ramp_down_at_step': 0, 'calc_num_training_steps': 0}
def custom_scheduler_global_update(current_loss: float):
custom_scheduler_params.update({'current_loss': current_loss})
def custom_scheduler_global_setup(trigger_loss: float, ramp_down_ratio: float):
custom_scheduler_params.update({'trigger_loss': trigger_loss})
custom_scheduler_params.update({'ramp_down_ratio': ramp_down_ratio})
# calculates the total num steps after trigger
custom_scheduler_params.update({'calc_num_training_steps': 0})
#calculates steps when the ramp_down trigger occured
custom_scheduler_params.update({'calc_ramp_down_at_step': 0})
# triggers scheduler stopping after it reached calc_num_training_steps
custom_scheduler_params.update({'dynamic_scheduler_stop': False})
2023-09-22 17:51:31 -04:00
# hold constant to the half of epochs then cosine down to 0
def _get_fp_half_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int):
global last_print_label
print_label = ''
half_steps = num_training_steps//2
num_warmup_steps = min(num_warmup_steps,half_steps)
if current_step < num_warmup_steps:
print_label = 'Scheduler: Warmup'
elif current_step < half_steps:
print_label = 'Scheduler: Hold'
else:
print_label = 'Scheduler: Annealing'
if print_label != last_print_label:
print(print_label)
last_print_label = print_label
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
if current_step < half_steps:
return 1.0
progress = float(current_step - half_steps) / float(max(1, num_training_steps - half_steps))
num_cycles = 0.5
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
# raise up in cosine, then fall back in cosine
def _get_fp_cosine_raise_and_fall_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int):
global last_print_label
print_label = ''
half_steps = num_training_steps//2
#num_warmup_steps = min(num_warmup_steps,half_steps)
if current_step < half_steps:
print_label = 'Scheduler: Raise'
else:
print_label = 'Scheduler: Fall'
if print_label != last_print_label:
print(print_label)
last_print_label = print_label
# linear
# return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - half_steps) / float(max(1, num_training_steps - half_steps))
num_cycles = 0.5
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
2023-09-22 17:51:31 -04:00
# constant to the first epochs then cosine down to 0 over the rest epochs
2023-09-17 10:09:31 -04:00
def _get_fp_cosine_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int):
global last_print_label
print_label = ''
num_warmup_steps = min(num_warmup_steps,num_firstepoch_steps)
if current_step < num_warmup_steps:
print_label = 'Scheduler: Warmup'
elif current_step < num_firstepoch_steps:
print_label = 'Scheduler: Hold'
else:
print_label = 'Scheduler: Annealing'
if print_label != last_print_label:
print(print_label)
last_print_label = print_label
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
if current_step < num_firstepoch_steps:
return 1.0
progress = float(current_step - num_firstepoch_steps) / float(max(1, num_training_steps - num_firstepoch_steps))
num_cycles = 0.5
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
# halve lr each epoch
def _get_fp_cdrop_rate_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int):
global last_print_label
print_label = ''
num_warmup_steps = min(num_warmup_steps, num_firstepoch_steps)
current_epoch = (current_step // num_firstepoch_steps) + 1
if current_step < num_warmup_steps:
print_label = 'Scheduler: Warmup'
elif current_step < num_firstepoch_steps:
print_label = 'Scheduler: Hold'
else:
print_label = 'Scheduler: Drop Rate'
if print_label != last_print_label:
print(print_label)
last_print_label = print_label
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
if current_step < num_firstepoch_steps:
return 1.0
# Compute the learning rate for the annealing phase
learning_rate = 1.0 / float(2 ** (current_epoch - 1))
return learning_rate
# epoch decay: 1/(1 + decay * epoch)
2023-09-17 10:09:31 -04:00
2023-09-22 17:51:31 -04:00
def custom_cosine_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1):
2023-09-17 10:09:31 -04:00
"""
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(
_get_fp_cosine_schedule_with_warmup_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_firstepoch_steps = num_firstepoch_steps,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
2023-09-22 17:51:31 -04:00
def custom_half_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1):
"""
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(
_get_fp_half_schedule_with_warmup_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_firstepoch_steps = num_firstepoch_steps,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def custom_raise_fall_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1):
"""
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(
_get_fp_cosine_raise_and_fall_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_firstepoch_steps = num_firstepoch_steps,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def neftune_forward(self, input: torch.Tensor):
"""
Implements the NEFTune forward pass for the model. Note this works only for
torch.nn.Embedding layers. This method is slightly adapted from the original source code
that can be found here: https://github.com/neelsjain/NEFTune
Args:
input (`torch.Tensor`):
The input tensor to the model.
noise_alpha (`float`):
The noise alpha value to use for the NEFTune forward pass.
"""
embeddings = torch.nn.functional.embedding(
input, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse
)
if self.training:
# Add noise to the embeddings
dims = torch.tensor(embeddings.size(1) * embeddings.size(2))
mag_norm = self.neftune_noise_alpha / torch.sqrt(dims)
embeddings = embeddings + torch.zeros_like(embeddings).uniform_(-mag_norm, mag_norm)
return embeddings
class FPNEFtuneTrainer(transformers.Trainer):
def __init__(self,neftune_noise_alpha:float = 0.0, model = None, *args, **kwargs):
self.neftune_noise_alpha = neftune_noise_alpha
if self.neftune_noise_alpha > 0.0:
model = self._activate_neftune(model)
super().__init__(model = model, *args, **kwargs)
def _activate_neftune(self, model):
r"""
Activates the neftune as presented in this code: https://github.com/neelsjain/NEFTune and paper: https://arxiv.org/abs/2310.05914
"""
print(f"Activating {RED}NEFtune{RESET} with scale: {self.neftune_noise_alpha}")
if isinstance(model, transformers.PreTrainedModel):
embeddings = model.get_input_embeddings()
elif isinstance(model, PeftModel):
embeddings = model.base_model.get_input_embeddings()
embeddings.neftune_noise_alpha = self.neftune_noise_alpha
old_forward = embeddings.forward
# This hack seems to be needed to properly use a custom forward pass
# all credits to: https://discuss.pytorch.org/t/how-can-i-replace-the-forward-method-of-a-predefined-torchvision-model-with-my-customized-forward-function/54224/11
bound_method = neftune_forward.__get__(embeddings, embeddings.__class__)
setattr(embeddings, "forward", bound_method)
# embeddings.forward = neftune_forward
embeddings._trl_old_forward = old_forward
return model
def train(self, *args, **kwargs):
output = super().train(*args, **kwargs)
# After training we make sure to retrieve back the original forward pass method
# for the embedding layer
if self.neftune_noise_alpha is not None:
if isinstance(self.model, transformers.PreTrainedModel):
embeddings = self.model.get_input_embeddings()
elif isinstance(self.model, PeftModel):
embeddings = self.model.base_model.get_input_embeddings()
if hasattr(embeddings, "_trl_old_forward"):
embeddings.forward = embeddings._trl_old_forward
del embeddings._trl_old_forward
del embeddings.neftune_noise_alpha
return output
2023-09-17 10:09:31 -04:00
class FPSchedulerTrainer(transformers.Trainer):
def __init__(self,neftune_noise_alpha:float = 0.0, model = None, *args, **kwargs):
self.neftune_noise_alpha = neftune_noise_alpha
if self.neftune_noise_alpha > 0.0:
model = self._activate_neftune(model)
super().__init__(model = model, *args, **kwargs)
def _activate_neftune(self, model):
r"""
Activates the neftune as presented in this code: https://github.com/neelsjain/NEFTune and paper: https://arxiv.org/abs/2310.05914
"""
print(f"Activating {RED}NEFtune{RESET} with scale: {self.neftune_noise_alpha}")
if isinstance(model, transformers.PreTrainedModel):
embeddings = model.get_input_embeddings()
elif isinstance(model, PeftModel):
embeddings = model.base_model.get_input_embeddings()
embeddings.neftune_noise_alpha = self.neftune_noise_alpha
old_forward = embeddings.forward
# This hack seems to be needed to properly use a custom forward pass
# all credits to: https://discuss.pytorch.org/t/how-can-i-replace-the-forward-method-of-a-predefined-torchvision-model-with-my-customized-forward-function/54224/11
bound_method = neftune_forward.__get__(embeddings, embeddings.__class__)
setattr(embeddings, "forward", bound_method)
# embeddings.forward = neftune_forward
embeddings._trl_old_forward = old_forward
return model
def train(self, *args, **kwargs):
output = super().train(*args, **kwargs)
# After training we make sure to retrieve back the original forward pass method
# for the embedding layer
if self.neftune_noise_alpha is not None:
if isinstance(self.model, transformers.PreTrainedModel):
embeddings = self.model.get_input_embeddings()
elif isinstance(self.model, PeftModel):
embeddings = self.model.base_model.get_input_embeddings()
if hasattr(embeddings, "_trl_old_forward"):
embeddings.forward = embeddings._trl_old_forward
del embeddings._trl_old_forward
del embeddings.neftune_noise_alpha
return output
2023-09-17 10:09:31 -04:00
def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None):
#Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or passed as an argument.
2023-09-22 17:51:31 -04:00
num_train_epochs = self.args.num_train_epochs
num_warmup_steps=self.args.get_warmup_steps(num_training_steps)
num_firstepoch_steps = math.ceil(num_training_steps/num_train_epochs)
num_warmup_acc = num_warmup_steps*self.args.gradient_accumulation_steps
num_firstepoch_steps_acc = num_firstepoch_steps*self.args.gradient_accumulation_steps
num_training_steps_acc = num_training_steps*self.args.gradient_accumulation_steps
custom_scheduler_params.update({'dynamic_scheduler_stop': False})
2023-09-22 17:51:31 -04:00
print (f"Warm-up steps aligned to Gradient accumulation ({self.args.gradient_accumulation_steps}) = {num_warmup_acc} actual warmup steps")
2023-09-17 10:09:31 -04:00
if self.args.lr_scheduler_type == 'cosine':
2023-09-22 17:51:31 -04:00
num_warmup_acc_min = min(num_warmup_acc, num_firstepoch_steps_acc)
2023-09-17 10:09:31 -04:00
if num_warmup_acc>num_firstepoch_steps_acc:
print(f"\033[1;31;1mWARNING: The number of warmup steps is set too high! It will be clamped to 1 epoch, essentially going from warmup to annealing.\033[0;37;0m")
print (f"FP Scheduler Warmup: 0-[{num_warmup_acc_min}], Hold [{num_warmup_acc_min}]-{num_firstepoch_steps_acc}, Annealing {num_firstepoch_steps_acc}-{num_training_steps_acc}")
else:
print (f"FP Scheduler Warmup: 0-{num_warmup_acc_min}, Hold {num_warmup_acc_min}-{num_firstepoch_steps_acc}, Annealing {num_firstepoch_steps_acc}-{num_training_steps_acc}")
2023-09-22 17:51:31 -04:00
self.lr_scheduler = custom_cosine_scheduler_with_warmup(
optimizer=self.optimizer if optimizer is None else optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_firstepoch_steps = num_firstepoch_steps,
)
self._created_lr_scheduler = True
return self.lr_scheduler
elif self.args.lr_scheduler_type == 'constant':
half_step_acc = num_training_steps_acc//2
num_warmup_acc_min = min(num_warmup_acc, half_step_acc)
if num_warmup_acc>half_step_acc:
print(f"\033[1;31;1mWARNING: The number of warmup steps is set too high! It will be clamped to half of all epochs, essentially going from warmup to annealing in the middle.\033[0;37;0m")
print (f"FP Scheduler Warmup: 0-[{num_warmup_acc_min}], Hold [{num_warmup_acc_min}]-{half_step_acc}, Annealing {half_step_acc}-{num_training_steps_acc}")
else:
print (f"FP Scheduler Warmup: 0-{num_warmup_acc_min}, Hold {num_warmup_acc_min}-{half_step_acc}, Annealing {half_step_acc}-{num_training_steps_acc}")
self.lr_scheduler = custom_half_scheduler_with_warmup(
2023-09-17 10:09:31 -04:00
optimizer=self.optimizer if optimizer is None else optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_firstepoch_steps = num_firstepoch_steps,
)
self._created_lr_scheduler = True
return self.lr_scheduler
elif self.args.lr_scheduler_type == 'constant_with_warmup':
half_step_acc = num_training_steps_acc//2
if num_warmup_steps>0:
print(f"Warmup doesn't apply to this scheduler [Raise-Fall]")
print (f"Scheduler Raise: 0-{half_step_acc}, Fall {half_step_acc}-{num_training_steps_acc}")
self.lr_scheduler = custom_raise_fall_scheduler_with_warmup(
optimizer=self.optimizer if optimizer is None else optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_firstepoch_steps = num_firstepoch_steps,
)
self._created_lr_scheduler = True
return self.lr_scheduler
2023-09-17 10:09:31 -04:00
else:
return super().create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer)