363 lines
21 KiB
Python
Raw Normal View History

import gc
import io
import json
import re
import sys
import time
import zipfile
from pathlib import Path
2022-12-21 13:27:31 -03:00
import gradio as gr
import torch
import modules.chat as chat
import modules.extensions as extensions_module
import modules.shared as shared
2023-02-23 13:03:52 -03:00
import modules.ui as ui
from modules.html_generator import generate_chat_html
2023-02-23 14:41:42 -03:00
from modules.models import load_model, load_soft_prompt
2023-02-23 13:03:52 -03:00
from modules.text_generation import generate_reply
2022-12-21 13:27:31 -03:00
if (shared.args.chat or shared.args.cai_chat) and not shared.args.no_stream:
print("Warning: chat mode currently becomes somewhat slower with text streaming on.\nConsider starting the web UI with the --no-stream option.\n")
2023-01-29 14:27:22 -03:00
2023-02-23 14:31:28 -03:00
# Loading custom settings
if shared.args.settings is not None and Path(shared.args.settings).exists():
new_settings = json.loads(open(Path(shared.args.settings), 'r').read())
2023-01-16 16:35:45 -03:00
for item in new_settings:
2023-02-23 13:28:30 -03:00
shared.settings[item] = new_settings[item]
2023-02-23 14:31:28 -03:00
def get_available_models():
return sorted([item.name for item in list(Path('models/').glob('*')) if not item.name.endswith(('.txt', '-np'))], key=str.lower)
def get_available_presets():
return sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('presets').glob('*.txt'))), key=str.lower)
def get_available_characters():
return ["None"] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('characters').glob('*.json'))), key=str.lower)
def get_available_extensions():
return sorted(set(map(lambda x : x.parts[1], Path('extensions').glob('*/script.py'))), key=str.lower)
def get_available_softprompts():
return ["None"] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('softprompts').glob('*.zip'))), key=str.lower)
2023-02-07 22:08:21 -03:00
def load_model_wrapper(selected_model):
if selected_model != shared.model_name:
shared.model_name = selected_model
2023-02-23 13:28:30 -03:00
shared.model = shared.tokenizer = None
if not shared.args.cpu:
2023-02-07 22:08:21 -03:00
gc.collect()
torch.cuda.empty_cache()
shared.model, shared.tokenizer = load_model(shared.model_name)
2023-02-07 22:08:21 -03:00
2023-02-12 09:36:27 -03:00
return selected_model
2023-02-07 22:08:21 -03:00
def load_preset_values(preset_menu, return_dict=False):
2023-02-08 00:19:20 -03:00
generate_params = {
2023-02-07 22:08:21 -03:00
'do_sample': True,
'temperature': 1,
'top_p': 1,
'typical_p': 1,
'repetition_penalty': 1,
'top_k': 50,
2023-02-07 23:11:04 -03:00
'num_beams': 1,
'penalty_alpha': 0,
2023-02-07 23:11:04 -03:00
'min_length': 0,
'length_penalty': 1,
'no_repeat_ngram_size': 0,
'early_stopping': False,
2023-02-07 22:08:21 -03:00
}
with open(Path(f'presets/{preset_menu}.txt'), 'r') as infile:
preset = infile.read()
2023-02-11 14:54:29 -03:00
for i in preset.splitlines():
i = i.rstrip(',').strip().split('=')
2023-02-07 22:08:21 -03:00
if len(i) == 2 and i[0].strip() != 'tokens':
2023-02-08 00:19:20 -03:00
generate_params[i[0].strip()] = eval(i[1].strip())
2023-02-07 22:08:21 -03:00
2023-02-08 00:19:20 -03:00
generate_params['temperature'] = min(1.99, generate_params['temperature'])
2023-02-07 22:08:21 -03:00
if return_dict:
2023-02-08 00:19:20 -03:00
return generate_params
2023-02-07 22:08:21 -03:00
else:
return generate_params['do_sample'], generate_params['temperature'], generate_params['top_p'], generate_params['typical_p'], generate_params['repetition_penalty'], generate_params['top_k'], generate_params['min_length'], generate_params['no_repeat_ngram_size'], generate_params['num_beams'], generate_params['penalty_alpha'], generate_params['length_penalty'], generate_params['early_stopping']
2023-02-07 22:08:21 -03:00
2023-02-23 13:28:30 -03:00
def upload_soft_prompt(file):
with zipfile.ZipFile(io.BytesIO(file)) as zf:
zf.extract('meta.json')
j = json.loads(open('meta.json', 'r').read())
name = j['name']
Path('meta.json').unlink()
with open(Path(f'softprompts/{name}.zip'), 'wb') as f:
f.write(file)
return name
2023-02-07 22:08:21 -03:00
def create_settings_menus():
2023-02-23 13:28:30 -03:00
generate_params = load_preset_values(shared.settings[f'preset{suffix}'] if not shared.args.flexgen else 'Naive', return_dict=True)
2023-01-22 00:49:59 -03:00
2023-02-07 22:08:21 -03:00
with gr.Row():
with gr.Column():
with gr.Row():
model_menu = gr.Dropdown(choices=available_models, value=shared.model_name, label='Model')
2023-02-23 13:03:52 -03:00
ui.create_refresh_button(model_menu, lambda : None, lambda : {"choices": get_available_models()}, "refresh-button")
2023-02-07 22:08:21 -03:00
with gr.Column():
with gr.Row():
2023-02-23 13:28:30 -03:00
preset_menu = gr.Dropdown(choices=available_presets, value=shared.settings[f'preset{suffix}'] if not shared.args.flexgen else 'Naive', label='Generation parameters preset')
2023-02-23 13:03:52 -03:00
ui.create_refresh_button(preset_menu, lambda : None, lambda : {"choices": get_available_presets()}, "refresh-button")
2023-01-22 00:49:59 -03:00
2023-02-16 21:55:20 -03:00
with gr.Accordion("Custom generation parameters", open=False, elem_id="accordion"):
2023-02-07 22:08:21 -03:00
with gr.Row():
2023-02-17 16:33:27 -03:00
do_sample = gr.Checkbox(value=generate_params['do_sample'], label="do_sample")
temperature = gr.Slider(0.01, 1.99, value=generate_params['temperature'], step=0.01, label="temperature")
with gr.Row():
top_k = gr.Slider(0,200,value=generate_params['top_k'],step=1,label="top_k")
top_p = gr.Slider(0.0,1.0,value=generate_params['top_p'],step=0.01,label="top_p")
with gr.Row():
repetition_penalty = gr.Slider(1.0,4.99,value=generate_params['repetition_penalty'],step=0.01,label="repetition_penalty")
no_repeat_ngram_size = gr.Slider(0, 20, step=1, value=generate_params["no_repeat_ngram_size"], label="no_repeat_ngram_size")
with gr.Row():
typical_p = gr.Slider(0.0,1.0,value=generate_params['typical_p'],step=0.01,label="typical_p")
min_length = gr.Slider(0, 2000, step=1, value=generate_params["min_length"] if shared.args.no_stream else 0, label="min_length", interactive=shared.args.no_stream)
2023-02-17 16:18:01 -03:00
gr.Markdown("Contrastive search:")
penalty_alpha = gr.Slider(0, 5, value=generate_params["penalty_alpha"], label="penalty_alpha")
gr.Markdown("Beam search (uses a lot of VRAM):")
2023-02-17 16:33:27 -03:00
with gr.Row():
num_beams = gr.Slider(1, 20, step=1, value=generate_params["num_beams"], label="num_beams")
length_penalty = gr.Slider(-5, 5, value=generate_params["length_penalty"], label="length_penalty")
2023-02-17 16:18:01 -03:00
early_stopping = gr.Checkbox(value=generate_params["early_stopping"], label="early_stopping")
2023-02-07 22:08:21 -03:00
2023-02-16 21:55:20 -03:00
with gr.Accordion("Soft prompt", open=False, elem_id="accordion"):
with gr.Row():
softprompts_menu = gr.Dropdown(choices=available_softprompts, value="None", label='Soft prompt')
2023-02-23 13:03:52 -03:00
ui.create_refresh_button(softprompts_menu, lambda : None, lambda : {"choices": get_available_softprompts()}, "refresh-button")
gr.Markdown('Upload a soft prompt (.zip format):')
with gr.Row():
upload_softprompt = gr.File(type='binary', file_types=[".zip"])
2023-02-12 09:36:27 -03:00
model_menu.change(load_model_wrapper, [model_menu], [model_menu], show_progress=True)
preset_menu.change(load_preset_values, [preset_menu], [do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping])
softprompts_menu.change(load_soft_prompt, [softprompts_menu], [softprompts_menu], show_progress=True)
2023-02-17 10:27:41 -03:00
upload_softprompt.upload(upload_soft_prompt, [upload_softprompt], [softprompts_menu])
return preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping
2023-02-07 22:08:21 -03:00
2023-01-22 00:49:59 -03:00
available_models = get_available_models()
available_presets = get_available_presets()
available_characters = get_available_characters()
available_softprompts = get_available_softprompts()
2023-02-23 13:03:52 -03:00
extensions_module.available_extensions = get_available_extensions()
if shared.args.extensions is not None:
2023-02-23 14:55:21 -03:00
extensions_module.load_extensions()
2023-01-22 00:49:59 -03:00
2023-01-06 19:56:44 -03:00
# Choosing the default model
if shared.args.model is not None:
shared.model_name = shared.args.model
2023-01-06 19:56:44 -03:00
else:
2023-01-06 22:05:37 -03:00
if len(available_models) == 0:
2023-01-06 19:56:44 -03:00
print("No models are available! Please download at least one.")
2023-01-30 14:17:12 -03:00
sys.exit(0)
2023-01-06 19:56:44 -03:00
elif len(available_models) == 1:
i = 0
else:
print("The following models are available:\n")
2023-02-23 14:31:28 -03:00
for i, model in enumerate(available_models):
2023-01-06 19:56:44 -03:00
print(f"{i+1}. {model}")
print(f"\nWhich one do you want to load? 1-{len(available_models)}\n")
i = int(input())-1
2023-01-09 12:56:54 -03:00
print()
shared.model_name = available_models[i]
shared.model, shared.tokenizer = load_model(shared.model_name)
2023-01-06 19:56:44 -03:00
# UI settings
2023-02-23 14:31:28 -03:00
buttons = {}
gen_events = []
suffix = '_pygmalion' if 'pygmalion' in shared.model_name.lower() else ''
description = f"\n\n# Text generation lab\nGenerate text using Large Language Models.\n"
if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')):
2023-02-23 13:28:30 -03:00
default_text = shared.settings['prompt_gpt4chan']
elif re.match('(rosey|chip|joi)_.*_instruct.*', shared.model_name.lower()) is not None:
default_text = 'User: \n'
else:
2023-02-23 13:28:30 -03:00
default_text = shared.settings['prompt']
if shared.args.chat or shared.args.cai_chat:
2023-02-23 13:03:52 -03:00
with gr.Blocks(css=ui.css+ui.chat_css, analytics_enabled=False) as interface:
interface.load(lambda : chat.load_default_history(shared.settings[f'name1{suffix}'], shared.settings[f'name2{suffix}']), None, None)
if shared.args.cai_chat:
2023-02-23 15:11:18 -03:00
display = gr.HTML(value=generate_chat_html(shared.history['visible'], shared.settings[f'name1{suffix}'], shared.settings[f'name2{suffix}'], shared.character))
2023-01-15 18:16:46 -03:00
else:
2023-02-23 15:11:18 -03:00
display = gr.Chatbot(value=shared.history['visible'])
textbox = gr.Textbox(label='Input')
2023-01-09 17:23:43 -03:00
with gr.Row():
buttons["Stop"] = gr.Button("Stop")
2023-02-04 22:53:42 -03:00
buttons["Generate"] = gr.Button("Generate")
buttons["Regenerate"] = gr.Button("Regenerate")
2023-02-04 22:53:42 -03:00
with gr.Row():
buttons["Impersonate"] = gr.Button("Impersonate")
buttons["Remove last"] = gr.Button("Remove last")
buttons["Clear history"] = gr.Button("Clear history")
with gr.Row():
buttons["Send last reply to input"] = gr.Button("Send last reply to input")
buttons["Replace last reply"] = gr.Button("Replace last reply")
if shared.args.picture:
2023-02-15 01:38:21 +02:00
with gr.Row():
picture_select = gr.Image(label="Send a picture", type='pil')
2023-02-15 20:55:32 -03:00
with gr.Tab("Chat settings"):
2023-02-23 13:28:30 -03:00
name1 = gr.Textbox(value=shared.settings[f'name1{suffix}'], lines=1, label='Your name')
name2 = gr.Textbox(value=shared.settings[f'name2{suffix}'], lines=1, label='Bot\'s name')
context = gr.Textbox(value=shared.settings[f'context{suffix}'], lines=2, label='Context')
2023-02-15 20:55:32 -03:00
with gr.Row():
character_menu = gr.Dropdown(choices=available_characters, value="None", label='Character')
2023-02-23 13:03:52 -03:00
ui.create_refresh_button(character_menu, lambda : None, lambda : {"choices": get_available_characters()}, "refresh-button")
2023-01-15 18:16:46 -03:00
2023-02-15 20:55:32 -03:00
with gr.Row():
2023-02-23 13:28:30 -03:00
check = gr.Checkbox(value=shared.settings[f'stop_at_newline{suffix}'], label='Stop generating at new line character?')
2023-02-15 20:55:32 -03:00
with gr.Row():
with gr.Tab('Chat history'):
with gr.Row():
with gr.Column():
gr.Markdown('Upload')
2023-02-17 10:27:41 -03:00
upload_chat_history = gr.File(type='binary', file_types=[".json", ".txt"])
2023-02-15 20:55:32 -03:00
with gr.Column():
gr.Markdown('Download')
download = gr.File()
buttons["Download"] = gr.Button(value="Click me")
with gr.Tab('Upload character'):
with gr.Row():
with gr.Column():
gr.Markdown('1. Select the JSON file')
upload_char = gr.File(type='binary', file_types=[".json"])
2023-02-15 20:55:32 -03:00
with gr.Column():
gr.Markdown('2. Select your character\'s profile picture (optional)')
upload_img = gr.File(type='binary', file_types=["image"])
2023-02-15 20:55:32 -03:00
buttons["Upload character"] = gr.Button(value="Submit")
with gr.Tab('Upload your profile picture'):
upload_img_me = gr.File(type='binary', file_types=["image"])
2023-02-15 20:55:32 -03:00
with gr.Tab('Upload TavernAI Character Card'):
upload_img_tavern = gr.File(type='binary', file_types=["image"])
2023-02-15 20:55:32 -03:00
with gr.Tab("Generation settings"):
with gr.Row():
with gr.Column():
2023-02-23 13:28:30 -03:00
max_new_tokens = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
2023-02-15 20:55:32 -03:00
with gr.Column():
2023-02-23 13:28:30 -03:00
chat_prompt_size_slider = gr.Slider(minimum=shared.settings['chat_prompt_size_min'], maximum=shared.settings['chat_prompt_size_max'], step=1, label='Maximum prompt size in tokens', value=shared.settings['chat_prompt_size'])
2023-02-15 20:55:32 -03:00
preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping = create_settings_menus()
2023-01-15 18:16:46 -03:00
if shared.args.extensions is not None:
2023-02-15 20:55:32 -03:00
with gr.Tab("Extensions"):
2023-02-23 14:55:21 -03:00
extensions_module.create_extensions_block()
2023-02-15 10:18:50 -03:00
input_params = [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size_slider]
if shared.args.picture:
input_params.append(picture_select)
function_call = "chat.cai_chatbot_wrapper" if shared.args.cai_chat else "chat.chatbot_wrapper"
gen_events.append(buttons["Generate"].click(eval(function_call), input_params, display, show_progress=shared.args.no_stream, api_name="textgen"))
gen_events.append(textbox.submit(eval(function_call), input_params, display, show_progress=shared.args.no_stream))
if shared.args.picture:
picture_select.upload(eval(function_call), input_params, display, show_progress=shared.args.no_stream)
gen_events.append(buttons["Regenerate"].click(chat.regenerate_wrapper, input_params, display, show_progress=shared.args.no_stream))
gen_events.append(buttons["Impersonate"].click(chat.impersonate_wrapper, input_params, textbox, show_progress=shared.args.no_stream))
buttons["Stop"].click(chat.stop_everything_event, [], [], cancels=gen_events)
buttons["Send last reply to input"].click(chat.send_last_reply_to_input, [], textbox, show_progress=shared.args.no_stream)
buttons["Replace last reply"].click(chat.replace_last_reply, [textbox, name1, name2], display, show_progress=shared.args.no_stream)
2023-02-23 15:11:18 -03:00
buttons["Clear history"].click(chat.clear_chat_log, [name1, name2], display)
buttons["Remove last"].click(chat.remove_last_message, [name1, name2], [display, textbox], show_progress=False)
buttons["Download"].click(chat.save_history, inputs=[], outputs=[download])
buttons["Upload character"].click(chat.upload_character, [upload_char, upload_img], [character_menu])
2023-02-15 11:38:44 -03:00
2023-02-15 12:46:11 -03:00
# Clearing stuff and saving the history
for i in ["Generate", "Regenerate", "Replace last reply"]:
buttons[i].click(lambda x: "", textbox, textbox, show_progress=False)
buttons[i].click(lambda : chat.save_history(timestamp=False), [], [], show_progress=False)
buttons["Clear history"].click(lambda : chat.save_history(timestamp=False), [], [], show_progress=False)
2023-01-08 01:33:45 -03:00
textbox.submit(lambda x: "", textbox, textbox, show_progress=False)
textbox.submit(lambda : chat.save_history(timestamp=False), [], [], show_progress=False)
2023-02-15 11:38:44 -03:00
character_menu.change(chat.load_character, [character_menu, name1, name2], [name2, context, display])
upload_chat_history.upload(chat.load_history, [upload_chat_history, name1, name2], [])
upload_img_tavern.upload(chat.upload_tavern_character, [upload_img_tavern, name1, name2], [character_menu])
upload_img_me.upload(chat.upload_your_profile_picture, [upload_img_me], [])
if shared.args.picture:
2023-02-17 10:27:41 -03:00
picture_select.upload(lambda : None, [], [picture_select], show_progress=False)
reload_func = chat.redraw_html if shared.args.cai_chat else lambda : shared.history['visible']
reload_inputs = [name1, name2] if shared.args.cai_chat else []
upload_chat_history.upload(reload_func, reload_inputs, [display])
upload_img_me.upload(reload_func, reload_inputs, [display])
interface.load(reload_func, reload_inputs, [display], show_progress=False)
elif shared.args.notebook:
2023-02-23 13:03:52 -03:00
with gr.Blocks(css=ui.css, analytics_enabled=False) as interface:
2023-01-18 22:44:47 -03:00
gr.Markdown(description)
with gr.Tab('Raw'):
textbox = gr.Textbox(value=default_text, lines=23)
with gr.Tab('Markdown'):
markdown = gr.Markdown()
with gr.Tab('HTML'):
html = gr.HTML()
2023-02-07 22:08:21 -03:00
buttons["Generate"] = gr.Button("Generate")
buttons["Stop"] = gr.Button("Stop")
2023-01-11 01:33:57 -03:00
2023-02-23 13:28:30 -03:00
max_new_tokens = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
2023-02-07 22:08:21 -03:00
preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping = create_settings_menus()
2023-01-18 22:44:47 -03:00
if shared.args.extensions is not None:
2023-02-23 14:55:21 -03:00
extensions_module.create_extensions_block()
gen_events.append(buttons["Generate"].click(generate_reply, [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping], [textbox, markdown, html], show_progress=shared.args.no_stream, api_name="textgen"))
gen_events.append(textbox.submit(generate_reply, [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping], [textbox, markdown, html], show_progress=shared.args.no_stream))
2023-01-29 14:27:22 -03:00
buttons["Stop"].click(None, None, None, cancels=gen_events)
2023-01-18 22:44:47 -03:00
else:
2023-02-23 13:03:52 -03:00
with gr.Blocks(css=ui.css, analytics_enabled=False) as interface:
gr.Markdown(description)
2023-01-06 22:05:37 -03:00
with gr.Row():
with gr.Column():
textbox = gr.Textbox(value=default_text, lines=15, label='Input')
2023-02-23 13:28:30 -03:00
max_new_tokens = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
buttons["Generate"] = gr.Button("Generate")
2023-01-18 22:44:47 -03:00
with gr.Row():
with gr.Column():
2023-01-29 14:27:22 -03:00
buttons["Continue"] = gr.Button("Continue")
2023-01-18 22:44:47 -03:00
with gr.Column():
buttons["Stop"] = gr.Button("Stop")
2023-02-07 22:08:21 -03:00
preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping = create_settings_menus()
if shared.args.extensions is not None:
2023-02-23 14:55:21 -03:00
extensions_module.create_extensions_block()
2023-01-06 22:05:37 -03:00
with gr.Column():
with gr.Tab('Raw'):
2023-01-11 01:36:11 -03:00
output_textbox = gr.Textbox(lines=15, label='Output')
2023-01-06 22:05:37 -03:00
with gr.Tab('Markdown'):
markdown = gr.Markdown()
2023-01-06 23:14:08 -03:00
with gr.Tab('HTML'):
html = gr.HTML()
2023-01-06 22:05:37 -03:00
gen_events.append(buttons["Generate"].click(generate_reply, [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping], [output_textbox, markdown, html], show_progress=shared.args.no_stream, api_name="textgen"))
gen_events.append(textbox.submit(generate_reply, [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping], [output_textbox, markdown, html], show_progress=shared.args.no_stream))
gen_events.append(buttons["Continue"].click(generate_reply, [output_textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping], [output_textbox, markdown, html], show_progress=shared.args.no_stream))
2023-01-29 14:27:22 -03:00
buttons["Stop"].click(None, None, None, cancels=gen_events)
2022-12-21 13:27:31 -03:00
interface.queue()
if shared.args.listen:
interface.launch(prevent_thread_lock=True, share=shared.args.share, server_name="0.0.0.0", server_port=shared.args.listen_port)
2023-01-20 23:45:16 -03:00
else:
interface.launch(prevent_thread_lock=True, share=shared.args.share, server_port=shared.args.listen_port)
2023-02-07 22:08:21 -03:00
# I think that I will need this later
while True:
time.sleep(0.5)