mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-22 08:07:56 +01:00
Various fixes in chat mode
This commit is contained in:
parent
b0e8cb8c88
commit
341e135036
@ -64,6 +64,7 @@ class Iteratorize:
|
|||||||
ret = self.mfunc(callback=_callback, **self.kwargs)
|
ret = self.mfunc(callback=_callback, **self.kwargs)
|
||||||
except ValueError:
|
except ValueError:
|
||||||
pass
|
pass
|
||||||
|
clear_torch_cache()
|
||||||
self.q.put(self.sentinel)
|
self.q.put(self.sentinel)
|
||||||
if self.c_callback:
|
if self.c_callback:
|
||||||
self.c_callback(ret)
|
self.c_callback(ret)
|
||||||
|
@ -115,18 +115,14 @@ def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical
|
|||||||
visible_text = visible_text.replace('\n', '<br>')
|
visible_text = visible_text.replace('\n', '<br>')
|
||||||
text = apply_extensions(text, "input")
|
text = apply_extensions(text, "input")
|
||||||
|
|
||||||
|
if custom_generate_chat_prompt is None:
|
||||||
|
prompt = generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size)
|
||||||
|
else:
|
||||||
|
prompt = custom_generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size)
|
||||||
|
|
||||||
# Generate
|
# Generate
|
||||||
reply = ''
|
reply = ''
|
||||||
for i in range(chat_generation_attempts):
|
for i in range(chat_generation_attempts):
|
||||||
|
|
||||||
# The prompt needs to be generated here because, as the reply
|
|
||||||
# grows, it may become necessary to remove more old messages to
|
|
||||||
# fit into the 2048 tokens window.
|
|
||||||
if custom_generate_chat_prompt is None:
|
|
||||||
prompt = generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size-len(encode(' '+reply)[0]))
|
|
||||||
else:
|
|
||||||
prompt = custom_generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size-len(encode(' '+reply)[0]))
|
|
||||||
|
|
||||||
for reply in generate_reply(f"{prompt}{' ' if len(reply) > 0 else ''}{reply}", max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name1}:"):
|
for reply in generate_reply(f"{prompt}{' ' if len(reply) > 0 else ''}{reply}", max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name1}:"):
|
||||||
|
|
||||||
# Extracting the reply
|
# Extracting the reply
|
||||||
@ -160,10 +156,10 @@ def impersonate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typ
|
|||||||
if 'pygmalion' in shared.model_name.lower():
|
if 'pygmalion' in shared.model_name.lower():
|
||||||
name1 = "You"
|
name1 = "You"
|
||||||
|
|
||||||
|
prompt = generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size, impersonate=True)
|
||||||
|
|
||||||
reply = ''
|
reply = ''
|
||||||
for i in range(chat_generation_attempts):
|
for i in range(chat_generation_attempts):
|
||||||
prompt = generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size-len(encode(' '+reply)[0]), impersonate=True)
|
|
||||||
for reply in generate_reply(prompt+reply, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
|
for reply in generate_reply(prompt+reply, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
|
||||||
reply, next_character_found, substring_found = extract_message_from_reply(prompt, reply, name1, name2, check, impersonate=True)
|
reply, next_character_found, substring_found = extract_message_from_reply(prompt, reply, name1, name2, check, impersonate=True)
|
||||||
if not substring_found:
|
if not substring_found:
|
||||||
|
@ -92,21 +92,22 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
|||||||
# These models are not part of Hugging Face, so we handle them
|
# These models are not part of Hugging Face, so we handle them
|
||||||
# separately and terminate the function call earlier
|
# separately and terminate the function call earlier
|
||||||
if shared.is_RWKV:
|
if shared.is_RWKV:
|
||||||
if shared.args.no_stream:
|
try:
|
||||||
reply = shared.model.generate(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k)
|
if shared.args.no_stream:
|
||||||
yield formatted_outputs(reply, shared.model_name)
|
reply = shared.model.generate(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k)
|
||||||
else:
|
|
||||||
yield formatted_outputs(question, shared.model_name)
|
|
||||||
# RWKV has proper streaming, which is very nice.
|
|
||||||
# No need to generate 8 tokens at a time.
|
|
||||||
for reply in shared.model.generate_with_streaming(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k):
|
|
||||||
yield formatted_outputs(reply, shared.model_name)
|
yield formatted_outputs(reply, shared.model_name)
|
||||||
|
else:
|
||||||
t1 = time.time()
|
yield formatted_outputs(question, shared.model_name)
|
||||||
output = encode(reply)[0]
|
# RWKV has proper streaming, which is very nice.
|
||||||
input_ids = encode(question)
|
# No need to generate 8 tokens at a time.
|
||||||
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0):.2f} tokens/s, {len(output)-len(input_ids[0])} tokens)")
|
for reply in shared.model.generate_with_streaming(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k):
|
||||||
return
|
yield formatted_outputs(reply, shared.model_name)
|
||||||
|
finally:
|
||||||
|
t1 = time.time()
|
||||||
|
output = encode(reply)[0]
|
||||||
|
input_ids = encode(question)
|
||||||
|
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0):.2f} tokens/s, {len(output)-len(input_ids[0])} tokens)")
|
||||||
|
return
|
||||||
|
|
||||||
original_question = question
|
original_question = question
|
||||||
if not (shared.args.chat or shared.args.cai_chat):
|
if not (shared.args.chat or shared.args.cai_chat):
|
||||||
|
Loading…
Reference in New Issue
Block a user