mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-01-26 03:22:30 +01:00
Various fixes in chat mode
This commit is contained in:
parent
0bd5430988
commit
b0e8cb8c88
@ -115,14 +115,18 @@ def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical
|
||||
visible_text = visible_text.replace('\n', '<br>')
|
||||
text = apply_extensions(text, "input")
|
||||
|
||||
if custom_generate_chat_prompt is None:
|
||||
prompt = generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size)
|
||||
else:
|
||||
prompt = custom_generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size)
|
||||
|
||||
# Generate
|
||||
reply = ''
|
||||
for i in range(chat_generation_attempts):
|
||||
|
||||
# The prompt needs to be generated here because, as the reply
|
||||
# grows, it may become necessary to remove more old messages to
|
||||
# fit into the 2048 tokens window.
|
||||
if custom_generate_chat_prompt is None:
|
||||
prompt = generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size-len(encode(' '+reply)[0]))
|
||||
else:
|
||||
prompt = custom_generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size-len(encode(' '+reply)[0]))
|
||||
|
||||
for reply in generate_reply(f"{prompt}{' ' if len(reply) > 0 else ''}{reply}", max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name1}:"):
|
||||
|
||||
# Extracting the reply
|
||||
@ -156,10 +160,10 @@ def impersonate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typ
|
||||
if 'pygmalion' in shared.model_name.lower():
|
||||
name1 = "You"
|
||||
|
||||
prompt = generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size, impersonate=True)
|
||||
|
||||
reply = ''
|
||||
for i in range(chat_generation_attempts):
|
||||
prompt = generate_chat_prompt(text, max_new_tokens, name1, name2, context, chat_prompt_size-len(encode(' '+reply)[0]), impersonate=True)
|
||||
for reply in generate_reply(prompt+reply, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
|
||||
reply, next_character_found, substring_found = extract_message_from_reply(prompt, reply, name1, name2, check, impersonate=True)
|
||||
if not substring_found:
|
||||
|
@ -159,35 +159,53 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||
else:
|
||||
generate_params.insert(0, "inputs=input_ids")
|
||||
|
||||
# Generate the entire reply at once.
|
||||
if shared.args.no_stream:
|
||||
with torch.no_grad():
|
||||
output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
|
||||
if shared.soft_prompt:
|
||||
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
|
||||
|
||||
reply = decode(output)
|
||||
if not (shared.args.chat or shared.args.cai_chat):
|
||||
reply = original_question + apply_extensions(reply[len(question):], "output")
|
||||
|
||||
yield formatted_outputs(reply, shared.model_name)
|
||||
|
||||
# Stream the reply 1 token at a time.
|
||||
# This is based on the trick of using 'stopping_criteria' to create an iterator.
|
||||
elif not shared.args.flexgen:
|
||||
|
||||
def generate_with_callback(callback=None, **kwargs):
|
||||
kwargs['stopping_criteria'].append(Stream(callback_func=callback))
|
||||
clear_torch_cache()
|
||||
try:
|
||||
# Generate the entire reply at once.
|
||||
if shared.args.no_stream:
|
||||
with torch.no_grad():
|
||||
shared.model.generate(**kwargs)
|
||||
output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
|
||||
if shared.soft_prompt:
|
||||
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
|
||||
|
||||
def generate_with_streaming(**kwargs):
|
||||
return Iteratorize(generate_with_callback, kwargs, callback=None)
|
||||
reply = decode(output)
|
||||
if not (shared.args.chat or shared.args.cai_chat):
|
||||
reply = original_question + apply_extensions(reply[len(question):], "output")
|
||||
|
||||
yield formatted_outputs(original_question, shared.model_name)
|
||||
with eval(f"generate_with_streaming({', '.join(generate_params)})") as generator:
|
||||
for output in generator:
|
||||
yield formatted_outputs(reply, shared.model_name)
|
||||
|
||||
# Stream the reply 1 token at a time.
|
||||
# This is based on the trick of using 'stopping_criteria' to create an iterator.
|
||||
elif not shared.args.flexgen:
|
||||
|
||||
def generate_with_callback(callback=None, **kwargs):
|
||||
kwargs['stopping_criteria'].append(Stream(callback_func=callback))
|
||||
clear_torch_cache()
|
||||
with torch.no_grad():
|
||||
shared.model.generate(**kwargs)
|
||||
|
||||
def generate_with_streaming(**kwargs):
|
||||
return Iteratorize(generate_with_callback, kwargs, callback=None)
|
||||
|
||||
yield formatted_outputs(original_question, shared.model_name)
|
||||
with eval(f"generate_with_streaming({', '.join(generate_params)})") as generator:
|
||||
for output in generator:
|
||||
if shared.soft_prompt:
|
||||
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
|
||||
reply = decode(output)
|
||||
|
||||
if not (shared.args.chat or shared.args.cai_chat):
|
||||
reply = original_question + apply_extensions(reply[len(question):], "output")
|
||||
yield formatted_outputs(reply, shared.model_name)
|
||||
|
||||
if output[-1] == n:
|
||||
break
|
||||
|
||||
# Stream the output naively for FlexGen since it doesn't support 'stopping_criteria'
|
||||
else:
|
||||
for i in range(max_new_tokens//8+1):
|
||||
clear_torch_cache()
|
||||
with torch.no_grad():
|
||||
output = eval(f"shared.model.generate({', '.join(generate_params)})")[0]
|
||||
if shared.soft_prompt:
|
||||
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
|
||||
reply = decode(output)
|
||||
@ -196,30 +214,14 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||
reply = original_question + apply_extensions(reply[len(question):], "output")
|
||||
yield formatted_outputs(reply, shared.model_name)
|
||||
|
||||
if output[-1] == n:
|
||||
if np.count_nonzero(input_ids[0] == n) < np.count_nonzero(output == n):
|
||||
break
|
||||
|
||||
# Stream the output naively for FlexGen since it doesn't support 'stopping_criteria'
|
||||
else:
|
||||
for i in range(max_new_tokens//8+1):
|
||||
clear_torch_cache()
|
||||
with torch.no_grad():
|
||||
output = eval(f"shared.model.generate({', '.join(generate_params)})")[0]
|
||||
if shared.soft_prompt:
|
||||
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
|
||||
reply = decode(output)
|
||||
input_ids = np.reshape(output, (1, output.shape[0]))
|
||||
if shared.soft_prompt:
|
||||
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
|
||||
|
||||
if not (shared.args.chat or shared.args.cai_chat):
|
||||
reply = original_question + apply_extensions(reply[len(question):], "output")
|
||||
yield formatted_outputs(reply, shared.model_name)
|
||||
|
||||
if np.count_nonzero(input_ids[0] == n) < np.count_nonzero(output == n):
|
||||
break
|
||||
|
||||
input_ids = np.reshape(output, (1, output.shape[0]))
|
||||
if shared.soft_prompt:
|
||||
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
|
||||
|
||||
t1 = time.time()
|
||||
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(original_input_ids[0]))/(t1-t0):.2f} tokens/s, {len(output)-len(original_input_ids[0])} tokens)")
|
||||
return
|
||||
finally:
|
||||
t1 = time.time()
|
||||
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(original_input_ids[0]))/(t1-t0):.2f} tokens/s, {len(output)-len(original_input_ids[0])} tokens)")
|
||||
return
|
||||
|
Loading…
Reference in New Issue
Block a user