Add some comments, remove obsolete code

This commit is contained in:
oobabooga 2023-04-13 11:17:32 -03:00
parent da74cd7c44
commit f2bf1a2c9e

View File

@ -78,8 +78,9 @@ def _load_quant(model, checkpoint, wbits, groupsize=-1, faster_kernel=False, exc
def load_quantized(model_name): def load_quantized(model_name):
# Find the model type
if not shared.args.model_type: if not shared.args.model_type:
# Try to determine model type from model name
name = model_name.lower() name = model_name.lower()
if any((k in name for k in ['llama', 'alpaca', 'vicuna'])): if any((k in name for k in ['llama', 'alpaca', 'vicuna'])):
model_type = 'llama' model_type = 'llama'
@ -94,6 +95,7 @@ def load_quantized(model_name):
else: else:
model_type = shared.args.model_type.lower() model_type = shared.args.model_type.lower()
# Select the appropriate load_quant function
if shared.args.pre_layer and model_type == 'llama': if shared.args.pre_layer and model_type == 'llama':
load_quant = llama_inference_offload.load_quant load_quant = llama_inference_offload.load_quant
elif model_type in ('llama', 'opt', 'gptj'): elif model_type in ('llama', 'opt', 'gptj'):
@ -104,7 +106,7 @@ def load_quantized(model_name):
print("Unknown pre-quantized model type specified. Only 'llama', 'opt' and 'gptj' are supported") print("Unknown pre-quantized model type specified. Only 'llama', 'opt' and 'gptj' are supported")
exit() exit()
# Now we are going to try to locate the quantized model file. I think it's cleaner and supports the new name containing groupsize # Locate the quantized model file
path_to_model = Path(f'{shared.args.model_dir}/{model_name}') path_to_model = Path(f'{shared.args.model_dir}/{model_name}')
pt_path = None pt_path = None
priority_name_list = [ priority_name_list = [
@ -118,7 +120,8 @@ def load_quantized(model_name):
pt_path = path pt_path = path
break break
# For compatibility, do we really need this? # If the model hasn't been found with a well-behaved name, pick the last .pt
# or the last .safetensors found in its folder as a last resort
if not pt_path: if not pt_path:
path_to_model = Path(f'{shared.args.model_dir}/{model_name}') path_to_model = Path(f'{shared.args.model_dir}/{model_name}')
found_pts = list(path_to_model.glob("*.pt")) found_pts = list(path_to_model.glob("*.pt"))
@ -129,23 +132,6 @@ def load_quantized(model_name):
pt_path = found_pts[-1] pt_path = found_pts[-1]
elif len(found_safetensors) > 0: elif len(found_safetensors) > 0:
pt_path = found_safetensors[-1] pt_path = found_safetensors[-1]
else:
if path_to_model.name.lower().startswith('llama-7b'):
pt_model = f'llama-7b-{shared.args.wbits}bit'
elif path_to_model.name.lower().startswith('llama-13b'):
pt_model = f'llama-13b-{shared.args.wbits}bit'
elif path_to_model.name.lower().startswith('llama-30b'):
pt_model = f'llama-30b-{shared.args.wbits}bit'
elif path_to_model.name.lower().startswith('llama-65b'):
pt_model = f'llama-65b-{shared.args.wbits}bit'
else:
pt_model = f'{model_name}-{shared.args.wbits}bit'
# Try to find the .safetensors or .pt both in the model dir and in the subfolder
for path in [Path(p + ext) for ext in ['.safetensors', '.pt'] for p in [f"{shared.args.model_dir}/{pt_model}", f"{path_to_model}/{pt_model}"]]:
if path.exists():
pt_path = path
break
if not pt_path: if not pt_path:
print("Could not find the quantized model in .pt or .safetensors format, exiting...") print("Could not find the quantized model in .pt or .safetensors format, exiting...")