mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-01 15:10:15 +01:00
192 lines
6.8 KiB
Python
192 lines
6.8 KiB
Python
import os
|
|
from modules import shared, utils
|
|
from pathlib import Path
|
|
import json
|
|
|
|
def list_subfoldersByTime(directory):
|
|
|
|
if not directory.endswith('/'):
|
|
directory += '/'
|
|
subfolders = []
|
|
path = directory
|
|
name_list = os.listdir(path)
|
|
full_list = [os.path.join(path,i) for i in name_list]
|
|
time_sorted_list = sorted(full_list, key=os.path.getmtime,reverse=True)
|
|
|
|
for entry in time_sorted_list:
|
|
if os.path.isdir(entry):
|
|
entry_str = f"{entry}" # Convert entry to a string
|
|
full_path = entry_str
|
|
entry_str = entry_str.replace('\\','/')
|
|
entry_str = entry_str.replace(f"{directory}", "") # Remove directory part
|
|
subfolders.append(entry_str)
|
|
|
|
return subfolders
|
|
|
|
def get_available_loras_local(_sortedByTime):
|
|
|
|
model_dir = shared.args.lora_dir # Update with the appropriate directory path
|
|
subfolders = []
|
|
if _sortedByTime:
|
|
subfolders = list_subfoldersByTime(model_dir)
|
|
else:
|
|
subfolders = utils.get_available_loras()
|
|
|
|
return subfolders
|
|
|
|
|
|
# FPHAM SPLIT BY SENTENCE BLOCK ===============
|
|
|
|
def split_sentences(text: str, cutoff_len: int):
|
|
sentences = []
|
|
sentence = ''
|
|
delimiters = ['. ', '? ', '! ', '... ', '.\n', '?\n', '!\n','...\n','</s>','<//>']
|
|
abbreviations = ['Mr. ', 'Mrs. ', 'Dr. ', 'Ms. ', 'St. ', 'Prof. ', 'Jr. ', 'Ltd. ', 'Capt. ', 'Col. ', 'Gen. ', 'Ave. ', 'Blvd. ', 'Co. ', 'Corp. ', 'Dept. ', 'Est. ', 'Gov. ', 'Inc. ', 'Ph.D. ', 'Univ. ']
|
|
errors = 0
|
|
max_cut = cutoff_len-1
|
|
prev_char = ''
|
|
|
|
for char in text:
|
|
sentence += char
|
|
|
|
|
|
if (any(sentence.endswith(delimiter) for delimiter in delimiters) and
|
|
not (prev_char.isupper() and len(sentence) >= 3 and sentence[-3] != ' ') and
|
|
not any(sentence.endswith(abbreviation) for abbreviation in abbreviations)):
|
|
tokens = shared.tokenizer.encode(sentence)
|
|
|
|
if len(tokens) > max_cut:
|
|
tokens = tokens[:max_cut]
|
|
sentence = shared.tokenizer.decode(tokens, skip_special_tokens=True)
|
|
errors = errors + 1
|
|
|
|
sentences.append({'text': sentence, 'size': len(tokens)})
|
|
|
|
sentence = ''
|
|
|
|
prev_char = char
|
|
|
|
if sentence:
|
|
tokens = shared.tokenizer.encode(sentence)
|
|
if len(tokens) > max_cut:
|
|
tokens = tokens[:max_cut]
|
|
sentence = shared.tokenizer.decode(tokens, skip_special_tokens=True)
|
|
errors = errors + 1
|
|
|
|
sentences.append({'text': sentence, 'size': len(tokens)})
|
|
|
|
if errors > 0:
|
|
print(f"Trimmed sentences beyond Cutoff Length: {errors}")
|
|
|
|
return sentences
|
|
|
|
# The goal of following code is to create blocks of text + overlapping blocks while:
|
|
# respects sentence boundaries
|
|
# always uses all the text
|
|
# hard cut defined by hard_cut_string or </s> will always end at the end of data block
|
|
# no overlapping blocks will be created across hard cut or across </s> token
|
|
|
|
def precise_cut(text: str, overlap: bool, min_chars_cut: int, eos_to_hc: bool, cutoff_len: int, hard_cut_string: str):
|
|
|
|
debug_slicer = False
|
|
EOSX_str = '<//>' #hardcut placeholder
|
|
EOS_str = '</s>'
|
|
print("Precise raw text slicer: ON")
|
|
|
|
cut_string = hard_cut_string.replace('\\n', '\n')
|
|
text = text.replace(cut_string, EOSX_str)
|
|
sentences = split_sentences(text, cutoff_len)
|
|
|
|
print(f"Sentences: {len(sentences)}")
|
|
sentencelist = []
|
|
currentSentence = ''
|
|
totalLength = 0
|
|
max_cut = cutoff_len-1
|
|
half_cut = cutoff_len//2
|
|
halfcut_length = 0
|
|
|
|
edgeindex = []
|
|
half_index = 0
|
|
|
|
for index, item in enumerate(sentences):
|
|
|
|
if halfcut_length+ item['size'] < half_cut:
|
|
halfcut_length += item['size']
|
|
half_index = index
|
|
else:
|
|
edgeindex.append(half_index)
|
|
halfcut_length = -2 * max_cut
|
|
|
|
|
|
if totalLength + item['size'] < max_cut and not currentSentence.endswith(EOSX_str):
|
|
currentSentence += item['text']
|
|
totalLength += item['size']
|
|
else:
|
|
|
|
if len(currentSentence.strip()) > min_chars_cut:
|
|
sentencelist.append(currentSentence.strip())
|
|
|
|
currentSentence = item['text']
|
|
totalLength = item['size']
|
|
halfcut_length = item['size']
|
|
|
|
if len(currentSentence.strip()) > min_chars_cut:
|
|
sentencelist.append(currentSentence.strip())
|
|
|
|
unique_blocks = len(sentencelist)
|
|
print(f"Text Blocks: {unique_blocks}")
|
|
|
|
#overlap strategies:
|
|
# don't overlap across HARD CUT (EOSX)
|
|
if overlap:
|
|
for edge_idx in edgeindex:
|
|
currentSentence = ''
|
|
totalLength = 0
|
|
|
|
for item in sentences[edge_idx:]:
|
|
if totalLength + item['size'] < max_cut:
|
|
currentSentence += item['text']
|
|
totalLength += item['size']
|
|
else:
|
|
#if by chance EOSX is at the end then it's acceptable
|
|
if currentSentence.endswith(EOSX_str) and len(currentSentence.strip()) > min_chars_cut:
|
|
sentencelist.append(currentSentence.strip())
|
|
# otherwise don't cross hard cut
|
|
elif EOSX_str not in currentSentence and len(currentSentence.strip()) > min_chars_cut:
|
|
sentencelist.append(currentSentence.strip())
|
|
|
|
currentSentence = ''
|
|
totalLength = 0
|
|
break
|
|
|
|
print(f"+ Overlapping blocks: {len(sentencelist)-unique_blocks}")
|
|
|
|
num_EOS = 0
|
|
for i in range(len(sentencelist)):
|
|
if eos_to_hc:
|
|
sentencelist[i] = sentencelist[i].replace(EOSX_str, EOS_str)
|
|
else:
|
|
sentencelist[i] = sentencelist[i].replace(EOSX_str, '')
|
|
|
|
#someone may have had stop strings in the raw text...
|
|
sentencelist[i] = sentencelist[i].replace("</s></s>", EOS_str)
|
|
num_EOS += sentencelist[i].count(EOS_str)
|
|
|
|
if num_EOS > 0:
|
|
print(f"+ EOS count: {num_EOS}")
|
|
|
|
#final check for useless lines
|
|
sentencelist = [item for item in sentencelist if item.strip() != "</s>"]
|
|
sentencelist = [item for item in sentencelist if item.strip() != ""]
|
|
|
|
|
|
if debug_slicer:
|
|
# Write the log file
|
|
Path('logs').mkdir(exist_ok=True)
|
|
sentencelist_dict = {index: sentence for index, sentence in enumerate(sentencelist)}
|
|
output_file = "logs/sentencelist.json"
|
|
with open(output_file, 'w') as f:
|
|
json.dump(sentencelist_dict, f,indent=2)
|
|
|
|
|
|
return sentencelist |