2023-06-16 22:03:23 -03:00

87 lines
3.3 KiB
Python

import sys
from pathlib import Path
from modules import shared
from modules.logging_colors import logger
sys.path.insert(0, str(Path("repositories/exllama")))
from repositories.exllama.generator import ExLlamaGenerator
from repositories.exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig
from repositories.exllama.tokenizer import ExLlamaTokenizer
class ExllamaModel:
def __init__(self):
pass
@classmethod
def from_pretrained(self, path_to_model):
path_to_model = Path("models") / Path(path_to_model)
tokenizer_model_path = path_to_model / "tokenizer.model"
model_config_path = path_to_model / "config.json"
# Find the model checkpoint
model_path = None
for ext in ['.safetensors', '.pt', '.bin']:
found = list(path_to_model.glob(f"*{ext}"))
if len(found) > 0:
if len(found) > 1:
logger.warning(f'More than one {ext} model has been found. The last one will be selected. It could be wrong.')
model_path = found[-1]
break
config = ExLlamaConfig(str(model_config_path))
config.model_path = str(model_path)
if shared.args.gpu_split:
config.set_auto_map(shared.args.gpu_split)
config.gpu_peer_fix = True
model = ExLlama(config)
tokenizer = ExLlamaTokenizer(str(tokenizer_model_path))
cache = ExLlamaCache(model)
result = self()
result.config = config
result.model = model
result.cache = cache
result.tokenizer = tokenizer
return result, result
def generate(self, prompt, state, callback=None):
generator = ExLlamaGenerator(self.model, self.tokenizer, self.cache)
generator.settings.temperature = state['temperature']
generator.settings.top_p = state['top_p']
generator.settings.top_k = state['top_k']
generator.settings.typical = state['typical_p']
generator.settings.token_repetition_penalty_max = state['repetition_penalty']
if state['ban_eos_token']:
generator.disallow_tokens([self.tokenizer.eos_token_id])
text = generator.generate_simple(prompt, max_new_tokens=state['max_new_tokens'])
return text
def generate_with_streaming(self, prompt, state, callback=None):
generator = ExLlamaGenerator(self.model, self.tokenizer, self.cache)
generator.settings.temperature = state['temperature']
generator.settings.top_p = state['top_p']
generator.settings.top_k = state['top_k']
generator.settings.typical = state['typical_p']
generator.settings.token_repetition_penalty_max = state['repetition_penalty']
if state['ban_eos_token']:
generator.disallow_tokens([self.tokenizer.eos_token_id])
generator.end_beam_search()
ids = generator.tokenizer.encode(prompt)
generator.gen_begin(ids)
initial_len = generator.sequence[0].shape[0]
for i in range(state['max_new_tokens']):
token = generator.gen_single_token()
yield (generator.tokenizer.decode(generator.sequence[0][initial_len:]))
if token.item() == generator.tokenizer.eos_token_id or shared.stop_everything:
break
def encode(self, string, **kwargs):
return self.tokenizer.encode(string)