mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-01-12 13:27:38 +01:00
87 lines
3.3 KiB
Python
87 lines
3.3 KiB
Python
import sys
|
|
from pathlib import Path
|
|
|
|
from modules import shared
|
|
from modules.logging_colors import logger
|
|
|
|
sys.path.insert(0, str(Path("repositories/exllama")))
|
|
from repositories.exllama.generator import ExLlamaGenerator
|
|
from repositories.exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig
|
|
from repositories.exllama.tokenizer import ExLlamaTokenizer
|
|
|
|
|
|
class ExllamaModel:
|
|
def __init__(self):
|
|
pass
|
|
|
|
@classmethod
|
|
def from_pretrained(self, path_to_model):
|
|
|
|
path_to_model = Path("models") / Path(path_to_model)
|
|
tokenizer_model_path = path_to_model / "tokenizer.model"
|
|
model_config_path = path_to_model / "config.json"
|
|
|
|
# Find the model checkpoint
|
|
model_path = None
|
|
for ext in ['.safetensors', '.pt', '.bin']:
|
|
found = list(path_to_model.glob(f"*{ext}"))
|
|
if len(found) > 0:
|
|
if len(found) > 1:
|
|
logger.warning(f'More than one {ext} model has been found. The last one will be selected. It could be wrong.')
|
|
|
|
model_path = found[-1]
|
|
break
|
|
|
|
config = ExLlamaConfig(str(model_config_path))
|
|
config.model_path = str(model_path)
|
|
if shared.args.gpu_split:
|
|
config.set_auto_map(shared.args.gpu_split)
|
|
config.gpu_peer_fix = True
|
|
|
|
model = ExLlama(config)
|
|
tokenizer = ExLlamaTokenizer(str(tokenizer_model_path))
|
|
cache = ExLlamaCache(model)
|
|
|
|
result = self()
|
|
result.config = config
|
|
result.model = model
|
|
result.cache = cache
|
|
result.tokenizer = tokenizer
|
|
return result, result
|
|
|
|
def generate(self, prompt, state, callback=None):
|
|
generator = ExLlamaGenerator(self.model, self.tokenizer, self.cache)
|
|
generator.settings.temperature = state['temperature']
|
|
generator.settings.top_p = state['top_p']
|
|
generator.settings.top_k = state['top_k']
|
|
generator.settings.typical = state['typical_p']
|
|
generator.settings.token_repetition_penalty_max = state['repetition_penalty']
|
|
if state['ban_eos_token']:
|
|
generator.disallow_tokens([self.tokenizer.eos_token_id])
|
|
|
|
text = generator.generate_simple(prompt, max_new_tokens=state['max_new_tokens'])
|
|
return text
|
|
|
|
def generate_with_streaming(self, prompt, state, callback=None):
|
|
generator = ExLlamaGenerator(self.model, self.tokenizer, self.cache)
|
|
generator.settings.temperature = state['temperature']
|
|
generator.settings.top_p = state['top_p']
|
|
generator.settings.top_k = state['top_k']
|
|
generator.settings.typical = state['typical_p']
|
|
generator.settings.token_repetition_penalty_max = state['repetition_penalty']
|
|
if state['ban_eos_token']:
|
|
generator.disallow_tokens([self.tokenizer.eos_token_id])
|
|
|
|
generator.end_beam_search()
|
|
ids = generator.tokenizer.encode(prompt)
|
|
generator.gen_begin(ids)
|
|
initial_len = generator.sequence[0].shape[0]
|
|
for i in range(state['max_new_tokens']):
|
|
token = generator.gen_single_token()
|
|
yield (generator.tokenizer.decode(generator.sequence[0][initial_len:]))
|
|
if token.item() == generator.tokenizer.eos_token_id or shared.stop_everything:
|
|
break
|
|
|
|
def encode(self, string, **kwargs):
|
|
return self.tokenizer.encode(string)
|