text-generation-webui/README.md
2023-10-05 09:22:37 -07:00

416 lines
22 KiB
Markdown

# Text generation web UI
A Gradio web UI for Large Language Models.
Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) of text generation.
|![Image1](https://github.com/oobabooga/screenshots/raw/main/print_instruct.png) | ![Image2](https://github.com/oobabooga/screenshots/raw/main/print_chat.png) |
|:---:|:---:|
|![Image1](https://github.com/oobabooga/screenshots/raw/main/print_default.png) | ![Image2](https://github.com/oobabooga/screenshots/raw/main/print_parameters.png) |
## Features
* 3 interface modes: default (two columns), notebook, and chat
* Multiple model backends: [transformers](https://github.com/huggingface/transformers), [llama.cpp](https://github.com/ggerganov/llama.cpp), [ExLlama](https://github.com/turboderp/exllama), [ExLlamaV2](https://github.com/turboderp/exllamav2), [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ), [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa), [CTransformers](https://github.com/marella/ctransformers), [AutoAWQ](https://github.com/casper-hansen/AutoAWQ)
* Dropdown menu for quickly switching between different models
* LoRA: load and unload LoRAs on the fly, train a new LoRA using QLoRA
* Precise instruction templates for chat mode, including Llama-2-chat, Alpaca, Vicuna, WizardLM, StableLM, and many others
* 4-bit, 8-bit, and CPU inference through the transformers library
* Use llama.cpp models with transformers samplers (`llamacpp_HF` loader)
* [Multimodal pipelines, including LLaVA and MiniGPT-4](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/multimodal)
* [Extensions framework](docs/Extensions.md)
* [Custom chat characters](docs/Chat-mode.md)
* Very efficient text streaming
* Markdown output with LaTeX rendering, to use for instance with [GALACTICA](https://github.com/paperswithcode/galai)
* API, including endpoints for websocket streaming ([see the examples](https://github.com/oobabooga/text-generation-webui/blob/main/api-examples))
To learn how to use the various features, check out the Documentation: https://github.com/oobabooga/text-generation-webui/tree/main/docs
## Installation
### One-click installers
1) Clone or download the repository.
2) Run the `start_linux.sh`, `start_windows.bat`, `start_macos.sh`, or `start_wsl.bat` script depending on your OS.
3) Select your GPU vendor when asked.
4) Have fun!
#### How it works
The script creates a folder called `installer_files` where it sets up a Conda environment using Miniconda. The installation is self-contained: if you want to reinstall, just delete `installer_files` and run the start script again.
To launch the webui in the future after it is already installed, run the same `start` script.
#### Getting updates
Run `update_linux.sh`, `update_windows.bat`, `update_macos.sh`, or `update_wsl.bat`.
#### Running commands
If you ever need to install something manually in the `installer_files` environment, you can launch an interactive shell using the cmd script: `cmd_linux.sh`, `cmd_windows.bat`, `cmd_macos.sh`, or `cmd_wsl.bat`.
#### Defining command-line flags
To define persistent command-line flags like `--listen` or `--api`, edit the `CMD_FLAGS.txt` file with a text editor and add them there. Flags can also be provided directly to the start scripts, for instance, `./start-linux.sh --listen`.
#### Other info
* There is no need to run any of those scripts as admin/root.
* For additional instructions about AMD setup, WSL setup, and nvcc installation, consult [this page](https://github.com/oobabooga/text-generation-webui/blob/main/docs/One-Click-Installers.md).
* The installer has been tested mostly on NVIDIA GPUs. If you can find a way to improve it for your AMD/Intel Arc/Mac Metal GPU, you are highly encouraged to submit a PR to this repository. The main file to be edited is `one_click.py`.
* For automated installation, you can use the `GPU_CHOICE`, `LAUNCH_AFTER_INSTALL`, and `INSTALL_EXTENSIONS` environment variables. For instance: `GPU_CHOICE=A LAUNCH_AFTER_INSTALL=False INSTALL_EXTENSIONS=False ./start_linux.sh`.
### Manual installation using Conda
Recommended if you have some experience with the command-line.
#### 0. Install Conda
https://docs.conda.io/en/latest/miniconda.html
On Linux or WSL, it can be automatically installed with these two commands ([source](https://educe-ubc.github.io/conda.html)):
```
curl -sL "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh" > "Miniconda3.sh"
bash Miniconda3.sh
```
#### 1. Create a new conda environment
```
conda create -n textgen python=3.10.9
conda activate textgen
```
#### 2. Install Pytorch
| System | GPU | Command |
|--------|---------|---------|
| Linux/WSL | NVIDIA | `pip3 install torch torchvision torchaudio` |
| Linux/WSL | CPU only | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu` |
| Linux | AMD | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.4.2` |
| MacOS + MPS | Any | `pip3 install torch torchvision torchaudio` |
| Windows | NVIDIA | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117` |
| Windows | CPU only | `pip3 install torch torchvision torchaudio` |
The up-to-date commands can be found here: https://pytorch.org/get-started/locally/.
#### 3. Install the web UI
```
git clone https://github.com/oobabooga/text-generation-webui
cd text-generation-webui
pip install -r requirements.txt
```
#### AMD, Metal, Intel Arc, and CPUs without AVX2
1) Replace the last command above with
```
pip install -r requirements_nowheels.txt
```
2) Manually install llama-cpp-python using the appropriate command for your hardware: [Installation from PyPI](https://github.com/abetlen/llama-cpp-python#installation-from-pypi).
3) Do the same for CTransformers: [Installation](https://github.com/marella/ctransformers#installation).
4) AMD: Manually install AutoGPTQ: [Installation](https://github.com/PanQiWei/AutoGPTQ#installation).
5) AMD: Manually install [ExLlama](https://github.com/turboderp/exllama) by simply cloning it into the `repositories` folder (it will be automatically compiled at runtime after that):
```
cd text-generation-webui
git clone https://github.com/turboderp/exllama repositories/exllama
```
#### bitsandbytes on older NVIDIA GPUs
bitsandbytes >= 0.39 may not work. In that case, to use `--load-in-8bit`, you may have to downgrade like this:
* Linux: `pip install bitsandbytes==0.38.1`
* Windows: `pip install https://github.com/jllllll/bitsandbytes-windows-webui/raw/main/bitsandbytes-0.38.1-py3-none-any.whl`
### Alternative: Docker
```
ln -s docker/{Dockerfile,docker-compose.yml,.dockerignore} .
cp docker/.env.example .env
# Edit .env and set TORCH_CUDA_ARCH_LIST based on your GPU model
docker compose up --build
```
* You need to have docker compose v2.17 or higher installed. See [this guide](https://github.com/oobabooga/text-generation-webui/blob/main/docs/Docker.md) for instructions.
* For additional docker files, check out [this repository](https://github.com/Atinoda/text-generation-webui-docker).
### Updating the requirements
From time to time, the `requirements.txt` changes. To update, use these commands:
```
conda activate textgen
cd text-generation-webui
pip install -r requirements.txt --upgrade
```
## Downloading models
Models should be placed in the `text-generation-webui/models` folder. They are usually downloaded from [Hugging Face](https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads).
* Transformers or GPTQ models are made of several files and must be placed in a subfolder. Example:
```
text-generation-webui
├── models
│   ├── lmsys_vicuna-33b-v1.3
│   │   ├── config.json
│   │   ├── generation_config.json
│   │   ├── pytorch_model-00001-of-00007.bin
│   │   ├── pytorch_model-00002-of-00007.bin
│   │   ├── pytorch_model-00003-of-00007.bin
│   │   ├── pytorch_model-00004-of-00007.bin
│   │   ├── pytorch_model-00005-of-00007.bin
│   │   ├── pytorch_model-00006-of-00007.bin
│   │   ├── pytorch_model-00007-of-00007.bin
│   │   ├── pytorch_model.bin.index.json
│   │   ├── special_tokens_map.json
│   │   ├── tokenizer_config.json
│   │   └── tokenizer.model
```
* GGUF models are a single file and should be placed directly into `models`. Example:
```
text-generation-webui
├── models
│   ├── llama-2-13b-chat.Q4_K_M.gguf
```
In both cases, you can use the "Model" tab of the UI to download the model from Hugging Face automatically. It is also possible to download via the command-line with `python download-model.py organization/model` (use `--help` to see all the options).
#### GPT-4chan
<details>
<summary>
Instructions
</summary>
[GPT-4chan](https://huggingface.co/ykilcher/gpt-4chan) has been shut down from Hugging Face, so you need to download it elsewhere. You have two options:
* Torrent: [16-bit](https://archive.org/details/gpt4chan_model_float16) / [32-bit](https://archive.org/details/gpt4chan_model)
* Direct download: [16-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model_float16/) / [32-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model/)
The 32-bit version is only relevant if you intend to run the model in CPU mode. Otherwise, you should use the 16-bit version.
After downloading the model, follow these steps:
1. Place the files under `models/gpt4chan_model_float16` or `models/gpt4chan_model`.
2. Place GPT-J 6B's config.json file in that same folder: [config.json](https://huggingface.co/EleutherAI/gpt-j-6B/raw/main/config.json).
3. Download GPT-J 6B's tokenizer files (they will be automatically detected when you attempt to load GPT-4chan):
```
python download-model.py EleutherAI/gpt-j-6B --text-only
```
When you load this model in default or notebook modes, the "HTML" tab will show the generated text in 4chan format:
![Image3](https://github.com/oobabooga/screenshots/raw/main/gpt4chan.png)
</details>
## Starting the web UI
conda activate textgen
cd text-generation-webui
python server.py
Then browse to
`http://localhost:7860/?__theme=dark`
Optionally, you can use the following command-line flags:
#### Basic settings
| Flag | Description |
|--------------------------------------------|-------------|
| `-h`, `--help` | Show this help message and exit. |
| `--multi-user` | Multi-user mode. Chat histories are not saved or automatically loaded. WARNING: this is highly experimental. |
| `--character CHARACTER` | The name of the character to load in chat mode by default. |
| `--model MODEL` | Name of the model to load by default. |
| `--lora LORA [LORA ...]` | The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces. |
| `--model-dir MODEL_DIR` | Path to directory with all the models. |
| `--lora-dir LORA_DIR` | Path to directory with all the loras. |
| `--model-menu` | Show a model menu in the terminal when the web UI is first launched. |
| `--settings SETTINGS_FILE` | Load the default interface settings from this yaml file. See `settings-template.yaml` for an example. If you create a file called `settings.yaml`, this file will be loaded by default without the need to use the `--settings` flag. |
| `--extensions EXTENSIONS [EXTENSIONS ...]` | The list of extensions to load. If you want to load more than one extension, write the names separated by spaces. |
| `--verbose` | Print the prompts to the terminal. |
| `--chat-buttons` | Show buttons on chat tab instead of hover menu. |
#### Model loader
| Flag | Description |
|--------------------------------------------|-------------|
| `--loader LOADER` | Choose the model loader manually, otherwise, it will get autodetected. Valid options: transformers, autogptq, gptq-for-llama, exllama, exllama_hf, llamacpp, rwkv, ctransformers |
#### Accelerate/transformers
| Flag | Description |
|---------------------------------------------|-------------|
| `--cpu` | Use the CPU to generate text. Warning: Training on CPU is extremely slow.|
| `--auto-devices` | Automatically split the model across the available GPU(s) and CPU. |
| `--gpu-memory GPU_MEMORY [GPU_MEMORY ...]` | Maximum GPU memory in GiB to be allocated per GPU. Example: `--gpu-memory 10` for a single GPU, `--gpu-memory 10 5` for two GPUs. You can also set values in MiB like `--gpu-memory 3500MiB`. |
| `--cpu-memory CPU_MEMORY` | Maximum CPU memory in GiB to allocate for offloaded weights. Same as above.|
| `--disk` | If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. |
| `--disk-cache-dir DISK_CACHE_DIR` | Directory to save the disk cache to. Defaults to `cache/`. |
| `--load-in-8bit` | Load the model with 8-bit precision (using bitsandbytes).|
| `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. |
| `--no-cache` | Set `use_cache` to False while generating text. This reduces the VRAM usage a bit with a performance cost. |
| `--xformers` | Use xformer's memory efficient attention. This should increase your tokens/s. |
| `--sdp-attention` | Use torch 2.0's sdp attention. |
| `--trust-remote-code` | Set trust_remote_code=True while loading a model. Necessary for ChatGLM and Falcon. |
| `--use_fast` | Set use_fast=True while loading a tokenizer. |
#### Accelerate 4-bit
⚠️ Requires minimum compute of 7.0 on Windows at the moment.
| Flag | Description |
|---------------------------------------------|-------------|
| `--load-in-4bit` | Load the model with 4-bit precision (using bitsandbytes). |
| `--compute_dtype COMPUTE_DTYPE` | compute dtype for 4-bit. Valid options: bfloat16, float16, float32. |
| `--quant_type QUANT_TYPE` | quant_type for 4-bit. Valid options: nf4, fp4. |
| `--use_double_quant` | use_double_quant for 4-bit. |
#### GGUF (for llama.cpp and ctransformers)
| Flag | Description |
|-------------|-------------|
| `--threads` | Number of threads to use. |
| `--threads-batch THREADS_BATCH` | Number of threads to use for batches/prompt processing. |
| `--n_batch` | Maximum number of prompt tokens to batch together when calling llama_eval. |
| `--n-gpu-layers N_GPU_LAYERS` | Number of layers to offload to the GPU. Only works if llama-cpp-python was compiled with BLAS. Set this to 1000000000 to offload all layers to the GPU. |
| `--n_ctx N_CTX` | Size of the prompt context. |
#### llama.cpp
| Flag | Description |
|---------------|---------------|
| `--mul_mat_q` | Activate new mulmat kernels. |
| `--tensor_split TENSOR_SPLIT` | Split the model across multiple GPUs, comma-separated list of proportions, e.g. 18,17 |
| `--llama_cpp_seed SEED` | Seed for llama-cpp models. Default 0 (random). |
| `--cache-capacity CACHE_CAPACITY` | Maximum cache capacity. Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed. |
|`--cfg-cache` | llamacpp_HF: Create an additional cache for CFG negative prompts. |
| `--no-mmap` | Prevent mmap from being used. |
| `--mlock` | Force the system to keep the model in RAM. |
| `--numa` | Activate NUMA task allocation for llama.cpp |
| `--cpu` | Use the CPU version of llama-cpp-python instead of the GPU-accelerated version. |
#### ctransformers
| Flag | Description |
|-------------|-------------|
| `--model_type MODEL_TYPE` | Model type of pre-quantized model. Currently gpt2, gptj, gptneox, falcon, llama, mpt, starcoder (gptbigcode), dollyv2, and replit are supported. |
#### AutoGPTQ
| Flag | Description |
|------------------|-------------|
| `--triton` | Use triton. |
| `--no_inject_fused_attention` | Disable the use of fused attention, which will use less VRAM at the cost of slower inference. |
| `--no_inject_fused_mlp` | Triton mode only: disable the use of fused MLP, which will use less VRAM at the cost of slower inference. |
| `--no_use_cuda_fp16` | This can make models faster on some systems. |
| `--desc_act` | For models that don't have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig. |
| `--disable_exllama` | Disable ExLlama kernel, which can improve inference speed on some systems. |
#### ExLlama
| Flag | Description |
|------------------|-------------|
|`--gpu-split` | Comma-separated list of VRAM (in GB) to use per GPU device for model layers, e.g. `20,7,7` |
|`--max_seq_len MAX_SEQ_LEN` | Maximum sequence length. |
|`--cfg-cache` | ExLlama_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader, but not necessary for CFG with base ExLlama. |
#### GPTQ-for-LLaMa
| Flag | Description |
|---------------------------|-------------|
| `--wbits WBITS` | Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported. |
| `--model_type MODEL_TYPE` | Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported. |
| `--groupsize GROUPSIZE` | Group size. |
| `--pre_layer PRE_LAYER [PRE_LAYER ...]` | The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg `--pre_layer 30 60`. |
| `--checkpoint CHECKPOINT` | The path to the quantized checkpoint file. If not specified, it will be automatically detected. |
| `--monkey-patch` | Apply the monkey patch for using LoRAs with quantized models.
#### DeepSpeed
| Flag | Description |
|---------------------------------------|-------------|
| `--deepspeed` | Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration. |
| `--nvme-offload-dir NVME_OFFLOAD_DIR` | DeepSpeed: Directory to use for ZeRO-3 NVME offloading. |
| `--local_rank LOCAL_RANK` | DeepSpeed: Optional argument for distributed setups. |
#### RWKV
| Flag | Description |
|---------------------------------|-------------|
| `--rwkv-strategy RWKV_STRATEGY` | RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8". |
| `--rwkv-cuda-on` | RWKV: Compile the CUDA kernel for better performance. |
#### RoPE (for llama.cpp, ExLlama, ExLlamaV2, and transformers)
| Flag | Description |
|------------------|-------------|
| `--alpha_value ALPHA_VALUE` | Positional embeddings alpha factor for NTK RoPE scaling. Use either this or compress_pos_emb, not both. |
| `--rope_freq_base ROPE_FREQ_BASE` | If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63). |
| `--compress_pos_emb COMPRESS_POS_EMB` | Positional embeddings compression factor. Should be set to (context length) / (model's original context length). Equal to 1/rope_freq_scale. |
#### Gradio
| Flag | Description |
|---------------------------------------|-------------|
| `--listen` | Make the web UI reachable from your local network. |
| `--listen-host LISTEN_HOST` | The hostname that the server will use. |
| `--listen-port LISTEN_PORT` | The listening port that the server will use. |
| `--share` | Create a public URL. This is useful for running the web UI on Google Colab or similar. |
| `--auto-launch` | Open the web UI in the default browser upon launch. |
| `--gradio-auth USER:PWD` | set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3" |
| `--gradio-auth-path GRADIO_AUTH_PATH` | Set the gradio authentication file path. The file should contain one or more user:password pairs in this format: "u1:p1,u2:p2,u3:p3" |
| `--ssl-keyfile SSL_KEYFILE` | The path to the SSL certificate key file. |
| `--ssl-certfile SSL_CERTFILE` | The path to the SSL certificate cert file. |
#### API
| Flag | Description |
|---------------------------------------|-------------|
| `--api` | Enable the API extension. |
| `--public-api` | Create a public URL for the API using Cloudfare. |
| `--public-api-id PUBLIC_API_ID` | Tunnel ID for named Cloudflare Tunnel. Use together with public-api option. |
| `--api-blocking-port BLOCKING_PORT` | The listening port for the blocking API. |
| `--api-streaming-port STREAMING_PORT` | The listening port for the streaming API. |
#### Multimodal
| Flag | Description |
|---------------------------------------|-------------|
| `--multimodal-pipeline PIPELINE` | The multimodal pipeline to use. Examples: `llava-7b`, `llava-13b`. |
## Presets
Inference settings presets can be created under `presets/` as yaml files. These files are detected automatically at startup.
The presets that are included by default are the result of a contest that received 7215 votes. More details can be found [here](https://github.com/oobabooga/oobabooga.github.io/blob/main/arena/results.md).
## Contributing
If you would like to contribute to the project, check out the [Contributing guidelines](https://github.com/oobabooga/text-generation-webui/wiki/Contributing-guidelines).
## Community
* Subreddit: https://www.reddit.com/r/oobabooga/
* Discord: https://discord.gg/jwZCF2dPQN
## Acknowledgment
In August 2023, [Andreessen Horowitz](https://a16z.com/) (a16z) provided a generous grant to encourage and support my independent work on this project. I am **extremely** grateful for their trust and recognition, which will allow me to dedicate more time towards realizing the full potential of text-generation-webui.