llama.cpp/convert-gptneox-h5-to-gguf.py

252 lines
8.6 KiB
Python
Raw Normal View History

2023-07-30 15:05:37 +02:00
# Quick and dirty HF gptneox--> gguf conversion
import gguf
import gguf_tensor_map as tmap
import os
2023-07-30 15:05:37 +02:00
import sys
import struct
import json
import numpy as np
from typing import Any, List
from pathlib import Path
from transformers import AutoTokenizer, AutoModelForCausalLM
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
2023-07-30 15:05:37 +02:00
2023-07-30 15:05:37 +02:00
if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)
# output in the same directory as the model
dir_model = sys.argv[1]
last_dir = os.path.basename(os.path.normpath(dir_model))
2023-07-30 15:05:37 +02:00
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 2:
ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
2023-07-30 15:05:37 +02:00
print("gguf: loading model "+last_dir)
2023-07-31 03:00:20 +02:00
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "GPTNeoXForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0] )
sys.exit()
2023-07-30 15:05:37 +02:00
2023-07-30 15:05:37 +02:00
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
list_vars = model.state_dict()
gguf_writer = gguf.GGUFWriter.open(fname_out)
print("gguf: get model metadata")
2023-07-30 15:05:37 +02:00
llm_arch = "gptneox"
block_count = hparams["num_hidden_layers"]
2023-07-30 15:05:37 +02:00
gguf_writer.add_name(last_dir)
gguf_writer.add_architecture(llm_arch)
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
gguf_writer.add_block_count(llm_arch, block_count)
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(llm_arch, int( hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])) )
gguf_writer.add_head_count(llm_arch, hparams["num_attention_heads"])
gguf_writer.add_parallel_residual(llm_arch, hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
gguf_writer.add_layer_norm_eps(llm_arch, hparams["layer_norm_eps"])
2023-07-30 15:05:37 +02:00
# TOKENIZATION
print("gguf: get tokenizer metadata")
2023-07-30 15:05:37 +02:00
tokens: List[str] = []
merges: List[str] = []
2023-07-30 15:05:37 +02:00
if Path(dir_model + "/tokenizer.json").is_file():
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
print("gguf: get gpt2 tokenizer merges")
2023-07-30 15:05:37 +02:00
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
tokenizer_json = json.load(f)
merges = tokenizer_json["model"]["merges"]
2023-07-30 15:05:37 +02:00
gguf_writer.add_token_merges(merges)
2023-07-30 15:05:37 +02:00
print("gguf: get gpt2 tokenizer vocab")
vocab_size = len( tokenizer_json["model"]["vocab"] )
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
byte_encoder = bytes_to_unicode()
byte_decoder = {v:k for k, v in byte_encoder.items()}
for i in range(vocab_size):
if i in reverse_vocab:
try:
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
except KeyError:
text = bytearray()
for c in reverse_vocab[i]:
if ord(c) < 256: # single byte character
text.append(byte_decoder[ord(c)])
else: # multibyte special token character
text.extend(c.encode('utf-8'))
else:
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
padding_token = f"[PAD{i}]".encode("utf8")
text = bytearray(padding_token)
tokens.append(text)
2023-07-30 15:05:37 +02:00
gguf_writer.add_token_list(tokens)
if "added_tokens" in tokenizer_json and Path(dir_model + "/tokenizer_config.json").is_file():
print("gguf: get special token ids")
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
tokenizer_config = json.load(f)
# find special token ids
if "bos_token" in tokenizer_config:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["bos_token"]:
gguf_writer.add_bos_token_id(key["id"])
if "eos_token" in tokenizer_config:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["eos_token"]:
gguf_writer.add_eos_token_id(key["id"])
if "unk_token" in tokenizer_config:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["unk_token"]:
gguf_writer.add_unk_token_id(key["id"])
if "sep_token" in tokenizer_config:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["sep_token"]:
gguf_writer.add_sep_token_id(key["id"])
if "pad_token" in tokenizer_config:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["pad_token"]:
gguf_writer.add_pad_token_id(key["id"])
2023-07-30 15:05:37 +02:00
# TENSORS
tensor_map = tmap.get_tensor_map(block_count)
2023-07-30 15:05:37 +02:00
# tensor info
print("gguf: get tensor metadata")
2023-07-30 15:05:37 +02:00
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
continue
# map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map:
name = tensor_map[name[:-7]] + ".weight"
elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias"
else:
print( "Can not map tensor '" + name + "'" )
sys.exit()
2023-07-30 15:05:37 +02:00
n_dims = len(data.shape)
data_dtype = data.dtype
2023-07-30 15:05:37 +02:00
# print( name + " dims " + str(n_dims) + " dtype " + str(data.dtype) )
if data.dtype != np.float16 and data.dtype != np.float32:
# convert any unsupported data types to float32
data_dtype = np.float32
elif ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
# if f16 desired, convert any float32 2-dim weight tensors to float16
data_dtype = np.float16
data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4
gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes)
2023-07-30 15:05:37 +02:00
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print("gguf: write tensor metadata")
gguf_writer.write_ti_data_to_file()
2023-07-30 15:05:37 +02:00
# tensor data
print("gguf: convert and write tensor data")
2023-07-30 15:05:37 +02:00
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
continue
n_dims = len(data.shape)
data_dtype = data.dtype
if data_dtype != np.float16 and data_dtype != np.float32:
# convert any unsupported data types to float32
data = data.astype(np.float32)
elif ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
# if f16 desired, convert any float32 2-dim weight tensors to float16
data = data.astype(np.float16)
2023-07-30 15:05:37 +02:00
gguf_writer.write_tensor_to_file(data)
2023-07-30 15:05:37 +02:00
gguf_writer.close()
print("gguf: model successfully exported to '" + fname_out + "'" )
2023-07-30 15:05:37 +02:00
print("")