mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-30 22:03:03 +01:00
94 lines
3.0 KiB
Plaintext
94 lines
3.0 KiB
Plaintext
|
#include "common.cuh"
|
||
|
#include "gla.cuh"
|
||
|
|
||
|
template<int HEAD_SIZE>
|
||
|
static __global__ void gated_linear_attn_f32(const int B, const int T, const int C, const int H, const float scale,
|
||
|
const float * k, const float * v, const float * r, const float * td, const float * s, float * dst) {
|
||
|
const int tid = threadIdx.x;
|
||
|
const int bid = blockIdx.x;
|
||
|
|
||
|
const int head_size = HEAD_SIZE;
|
||
|
const int batch_i = bid / H;
|
||
|
const int head_i = bid % H;
|
||
|
const int state_size = C * head_size;
|
||
|
const int n_seq_tokens = T / B;
|
||
|
|
||
|
float state[head_size];
|
||
|
__shared__ float _k[head_size], _r[head_size], _td[head_size];
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < head_size; i++) {
|
||
|
state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
|
||
|
}
|
||
|
|
||
|
for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid; t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) {
|
||
|
__syncthreads();
|
||
|
_k[tid] = k[t];
|
||
|
_r[tid] = r[t];
|
||
|
_td[tid] = td[t];
|
||
|
__syncthreads();
|
||
|
|
||
|
const float _v = v[t];
|
||
|
float y = 0;
|
||
|
for (int j = 0; j < head_size; j += 4) {
|
||
|
const float4 & k = (float4 &)(_k[j]);
|
||
|
const float4 & r = (float4 &)(_r[j]);
|
||
|
const float4 & td = (float4 &)(_td[j]);
|
||
|
float4 & s = (float4 &)(state[j]);
|
||
|
float4 kv;
|
||
|
|
||
|
kv.x = k.x * _v;
|
||
|
kv.y = k.y * _v;
|
||
|
kv.z = k.z * _v;
|
||
|
kv.w = k.w * _v;
|
||
|
|
||
|
s.x = s.x * td.x + kv.x;
|
||
|
s.y = s.y * td.y + kv.y;
|
||
|
s.z = s.z * td.z + kv.z;
|
||
|
s.w = s.w * td.w + kv.w;
|
||
|
|
||
|
y += r.x * s.x;
|
||
|
y += r.y * s.y;
|
||
|
y += r.z * s.z;
|
||
|
y += r.w * s.w;
|
||
|
}
|
||
|
dst[t] = y * scale;
|
||
|
}
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < head_size; i++) {
|
||
|
dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ggml_cuda_op_gated_linear_attn(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||
|
const float * k_d = (const float *)dst->src[0]->data;
|
||
|
const float * v_d = (const float *)dst->src[1]->data;
|
||
|
const float * r_d = (const float *)dst->src[2]->data;
|
||
|
const float * td_d = (const float *)dst->src[3]->data;
|
||
|
const float * s_d = (const float *)dst->src[4]->data;
|
||
|
|
||
|
const int64_t B = dst->src[4]->ne[1];
|
||
|
const int64_t T = dst->src[0]->ne[2];
|
||
|
const int64_t C = dst->ne[0];
|
||
|
const int64_t H = dst->src[0]->ne[1];
|
||
|
|
||
|
float scale;
|
||
|
memcpy(&scale, (float*)dst->op_params, sizeof(float));
|
||
|
|
||
|
float * dst_d = (float *)dst->data;
|
||
|
|
||
|
cudaStream_t stream = ctx.stream();
|
||
|
|
||
|
GGML_ASSERT(dst->src[4]->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT(C % H == 0);
|
||
|
GGML_ASSERT(C / H == 64 || C / H == 128);
|
||
|
|
||
|
|
||
|
if (C / H == 64) {
|
||
|
gated_linear_attn_f32<64><<<B * H, C / H, 0, stream>>>(B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d);
|
||
|
} else {
|
||
|
gated_linear_attn_f32<128><<<B * H, C / H, 0, stream>>>(B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d);
|
||
|
}
|
||
|
}
|