llama.cpp/ggml/src/ggml-cuda/gla.cu
Molly Sophia ee7136c6d1
llama: add support for QRWKV6 model architecture (#11001)
llama: add support for QRWKV6 model architecture (#11001)

* WIP: Add support for RWKV6Qwen2

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV: Some graph simplification

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add support for RWKV6Qwen2 with cpu and cuda GLA

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV6[QWEN2]: Concat lerp weights together to reduce cpu overhead

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix some typos

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* code format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix wkv test & add gla test

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix cuda warning

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update README.md

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update ggml/src/ggml-cuda/gla.cu

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Fix fused lerp weights loading with RWKV6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* better sanity check skipping for QRWKV6 in llama-quant

thanks @compilade

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: compilade <git@compilade.net>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: compilade <git@compilade.net>
2025-01-10 09:58:08 +08:00

94 lines
3.0 KiB
Plaintext

#include "common.cuh"
#include "gla.cuh"
template<int HEAD_SIZE>
static __global__ void gated_linear_attn_f32(const int B, const int T, const int C, const int H, const float scale,
const float * k, const float * v, const float * r, const float * td, const float * s, float * dst) {
const int tid = threadIdx.x;
const int bid = blockIdx.x;
const int head_size = HEAD_SIZE;
const int batch_i = bid / H;
const int head_i = bid % H;
const int state_size = C * head_size;
const int n_seq_tokens = T / B;
float state[head_size];
__shared__ float _k[head_size], _r[head_size], _td[head_size];
#pragma unroll
for (int i = 0; i < head_size; i++) {
state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
}
for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid; t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) {
__syncthreads();
_k[tid] = k[t];
_r[tid] = r[t];
_td[tid] = td[t];
__syncthreads();
const float _v = v[t];
float y = 0;
for (int j = 0; j < head_size; j += 4) {
const float4 & k = (float4 &)(_k[j]);
const float4 & r = (float4 &)(_r[j]);
const float4 & td = (float4 &)(_td[j]);
float4 & s = (float4 &)(state[j]);
float4 kv;
kv.x = k.x * _v;
kv.y = k.y * _v;
kv.z = k.z * _v;
kv.w = k.w * _v;
s.x = s.x * td.x + kv.x;
s.y = s.y * td.y + kv.y;
s.z = s.z * td.z + kv.z;
s.w = s.w * td.w + kv.w;
y += r.x * s.x;
y += r.y * s.y;
y += r.z * s.z;
y += r.w * s.w;
}
dst[t] = y * scale;
}
#pragma unroll
for (int i = 0; i < head_size; i++) {
dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
}
}
void ggml_cuda_op_gated_linear_attn(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const float * k_d = (const float *)dst->src[0]->data;
const float * v_d = (const float *)dst->src[1]->data;
const float * r_d = (const float *)dst->src[2]->data;
const float * td_d = (const float *)dst->src[3]->data;
const float * s_d = (const float *)dst->src[4]->data;
const int64_t B = dst->src[4]->ne[1];
const int64_t T = dst->src[0]->ne[2];
const int64_t C = dst->ne[0];
const int64_t H = dst->src[0]->ne[1];
float scale;
memcpy(&scale, (float*)dst->op_params, sizeof(float));
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(dst->src[4]->type == GGML_TYPE_F32);
GGML_ASSERT(C % H == 0);
GGML_ASSERT(C / H == 64 || C / H == 128);
if (C / H == 64) {
gated_linear_attn_f32<64><<<B * H, C / H, 0, stream>>>(B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d);
} else {
gated_linear_attn_f32<128><<<B * H, C / H, 0, stream>>>(B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d);
}
}