Commit Graph

233 Commits

Author SHA1 Message Date
Georgi Gerganov
45a55b91aa
llama : better replace_all (cont) (#8926)
* llama : better replace_all (cont)

ggml-ci

* code : deduplicate replace_all

ggml-ci
2024-08-09 18:23:52 +03:00
Xuan Son Nguyen
1e6f6554aa
server : add lora hotswap endpoint (WIP) (#8857)
* server : add lora hotswap endpoint

* handle lora_no_apply

* fix build

* updae docs

* clean up struct def

* fix build

* add LoRA test

* fix style
2024-08-06 17:33:39 +02:00
Liu Jia
0a4ce78681
common : Changed tuple to struct (TODO fix) (#8823)
* common : Changed tuple to struct (TODO fix)

Use struct `llama_init_result` to replace the previous
std::tuple<struct llama_model *, struct llama_context *>

* delete llama_init_default_params()

* delete the extra whitespace
2024-08-05 18:14:10 +02:00
Igor Okulist
afbbcf3c04
server : update llama-server embedding flag documentation (#8779)
Fixes #8763
2024-07-31 19:59:09 -04:00
Daniel Bevenius
9d03d085dd
common : add --no-warmup option for main/llama-cli (#8712)
This commit adds a --no-warmup option for llama-cli.

The motivation for this is that it can be convenient to skip the
warmup llama_decode call when debugging.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-07-27 13:45:02 +03:00
Xuan Son Nguyen
96952e7181
llama : fix llama_chat_format_single for mistral (#8657)
* fix `llama_chat_format_single` for mistral

* fix typo

* use printf
2024-07-24 13:48:46 +02:00
Xuan Son Nguyen
de280085e7
examples : Fix llama-export-lora example (#8607)
* fix export-lora example

* add more logging

* reject merging subset

* better check

* typo
2024-07-23 23:48:37 +02:00
Xuan Son Nguyen
97bdd26eee
Refactor lora adapter support (#8332)
* lora: load to devide buft

* add patch tensor function

* correct tensor patch

* llama_lora_adapter_apply

* correct ggml_backend_tensor_copy

* add llm_build_mm

* fix auto merge

* update based on review comments

* add convert script

* no more transpose A

* add f16 convert

* add metadata check

* add sanity check

* fix ftype

* add requirements

* fix requirements

* fix outfile

* conversion: only allow selected models

* fix types

* cuda : do not use dmmv if the tensor does not have enough cols

* llama : lora fixes

* do not disable mmap with lora

Co-authored-by: slaren <slarengh@gmail.com>

* llm_build_lora_mm_id

* convert_lora : MoE LoRA conversion support

* convert_lora : prefer safetensors, similarly to convert_hf

* convert_hf : simplify modify_tensors for InternLM2

* convert_lora : lazy conversion

* llama : load and use alpha from LoRA adapters

* llama : use llm_build_lora_mm in most model graphs

* auto scale

* Revert "auto scale"

This reverts commit 42415a4874.

* remove redundant params

* Apply suggestions from code review

Co-authored-by: slaren <slarengh@gmail.com>

* change kv metadata

* move add_type to __init__

* convert_hf : move add_type to main()

* convert_lora : use the GGUFWriter from Model instead of overwriting it

---------

Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2024-07-15 20:50:47 +02:00
Georgi Gerganov
9104bc20ed
common : add --no-cont-batching arg (#6358) 2024-07-15 14:54:58 +03:00
Borislav Stanimirov
7a80710d93
msvc : silence codecvt c++17 deprecation warnings (#8395) 2024-07-10 14:40:53 +03:00
Derrick T. Woolworth
86e7299ef5
added support for Authorization Bearer tokens when downloading model (#8307)
* added support for Authorization Bearer tokens

* removed auth_token, removed set_ function, other small fixes

* Update common/common.cpp

---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-07-06 22:32:04 +02:00
jaime-m-p
213701b51a
Detokenizer fixes (#8039)
* Add llama_detokenize():
  - Update header files location
  - UNKNOWN and CONTROL are 'special pieces'
  - Remove space after UNKNOWN and CONTROL
  - Refactor llama_token_to_piece()
  - Add flag: clean_up_tokenization_spaces
  - Symmetric params for llama_tokenize() and llama_detokenize()

* Update and fix tokenizer tests:
  - Using llama_detokenize()
  - Unexpected vocab type as test fail instead of error
    - Useful when automating tests:
    - If you don't know in advance the vocab type
    - Differenciate other loading errors
  - Skip unicode surrogaes and undefined
  - Gracefully exit threads
    - Using exit() is throwing random exceptions
  - Clean old known problematic codepoints
  - Minor: confusing hexadecimal codepoint

* Update bruteforce random tests
  - Add detokenizer checks
  - New generator: ascii_lr_strip
  - New generator: apostrophe
  - Add more vocabs files
  - Detokenize special tokens.
  - Replace errors with '\uFFFD' when detokenizing to 'utf-8'
  - More edge cases
  - Better detokenization results check

* Fix add_space_prefix, set false by default
* Better leading space removal
* Do not remove space when decoding special tokens
* Bugfix: custom regexs splits undefined unicode codepoints
* 'viking' detokenizer clean spaces
2024-07-05 19:01:35 +02:00
Douglas Hanley
d12f781074
llama : streamline embeddings from "non-embedding" models (#8087) 2024-07-05 10:05:56 +03:00
Xuan Son Nguyen
a38b884c6c
cli: add EOT when user hit Ctrl+C (#8296)
* main: add need_insert_eot

* do not format system prompt if it is empty
2024-07-04 20:55:03 +02:00
fairydreaming
807b0c49ff
Inference support for T5 and FLAN-T5 model families (#5763)
* llama : add inference support and model types for T5 and FLAN-T5 model families

* llama : add new API functions to support encoder-decoder models: llama_encode(), llama_model_has_encoder(), llama_model_decoder_start_token()

* common, llama-cli, llama-batched : add support for encoder-decoder models

* convert-hf : handle shared token embeddings tensors in T5Model

* convert-hf : add support for SentencePiece BPE tokenizer in T5Model (for Pile-T5 models)

* convert-hf : add MT5ForConditionalGeneration and UMT5ForConditionalGeneration to architectures supported by T5Model

* convert : add t5 tokenizer tests, use "slow" HF tokenizer for t5

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-07-04 15:46:11 +02:00
MistApproach
a27152b602
fix: add missing short command line argument -mli for multiline-input (#8261) 2024-07-02 22:56:46 +02:00
Xuan Son Nguyen
9ef0780062
Fix new line issue with chat template, disable template when in-prefix/suffix is set (#8203)
* preserve new line llama_chat_format_single

* disable chat template if in-prefix/suffix is set

* remove redundant change
2024-06-30 20:27:13 +02:00
Sigbjørn Skjæret
38373cfbab
Add SPM infill support (#8016)
* add --spm-infill option

* support --spm-infill

* support --spm-infill
2024-06-28 12:53:43 +02:00
Xuan Son Nguyen
16791b8f0b
Add chatml fallback for cpp llama_chat_apply_template (#8160)
* add chatml fallback for cpp `llama_chat_apply_template`

* remove redundant code
2024-06-27 18:14:19 +02:00
jukofyork
97877eb10b
Control vector loading fixes (#8137)
* Fixed leak in llama_control_vector_load_one() and allow llama_control_vector_load() to grow

* refactored `llama_control_vector_load_one()`

* allow multiple directions for same layer in same file

* llama_control_vector_load_one() and llama_control_vector_load() now break on error

* removed unnecessary ggml_free() call
2024-06-27 16:48:07 +02:00
Xuan Son Nguyen
49c03c79cd
cvector: better prompt handling, add "mean vector" method (#8069)
* remove completions file

* fix inverted vector

* add mean method

* code style

* remove inverted pca hotfix
2024-06-25 13:59:54 +02:00
Xuan Son Nguyen
48e6b92cc3
Add chat template support for llama-cli (#8068)
* add chat template support for llama-cli

* add help message

* server: simplify format_chat

* more consistent naming

* improve

* add llama_chat_format_example

* fix server

* code style

* code style

* Update examples/main/main.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-06-25 21:56:49 +10:00
HatsuneMikuUwU33
f702a90e24
Update control vector help (#8104) 2024-06-25 10:44:48 +02:00
Yann Follet
646ef4a9cf
embedding : more cli arguments (#7458)
* add parameters for embeddings
--embd-normalize
--embd-output-format
--embd-separator
description in the README.md

* Update README.md

fix tipo

* Trailing whitespace

* fix json generation, use " not '

* fix merge master

* fix code formating
group of parameters // embedding
print usage for embedding parameters

---------

Co-authored-by: Brian <mofosyne@gmail.com>
2024-06-24 08:30:24 +03:00
Xuan Son Nguyen
3e58b0ee35
cvector: fix CI + correct help message (#8064)
* cvector: fix CI + correct help message

* also correct --pca-iter
2024-06-22 18:11:30 +02:00
Douglas Hanley
80ea089d77
llama : allow pooled embeddings on any model (#7477)
* create append_pooling operation; allow to specify attention_type; add last token pooling; update examples

* find result_norm/result_embd tensors properly; update output allocation logic

* only use embd output for pooling_type NONE

* get rid of old causal_attn accessor

* take out attention_type; add in llama_set_embeddings

* bypass logits when doing non-NONE pooling
2024-06-21 08:38:22 +03:00
Johannes Gäßler
abd894ad96
common: fix warning (#8036)
* common: fix warning

* Update common/common.cpp

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-20 16:40:13 +02:00
Xuan Son Nguyen
0c7b3595b9
Add cvector-generator example (#7514)
* add control-vector-generator

* calc diff

* add comments

* proof-of-concept stdlib implementation

Implements PCA and file writing using mostly standard libraries. The output is recognized as a functional control vector, but outputs gibberish.

* param parsing, refactor, comments

Added basic command-line parameters for outfile and one each positive/negative prompt.

Refactored some messy code in PCA computation and GGUF exporting.

Left a bunch of comments regarding further work needed.

* example template completions

Implements an example template set built from the positive/negative prompts like the control vector Python implementation.

* add multi prompts, multi-thread for PCA

* fix mem error

* add debugs

* fix matrix transpose multiplication

you have got to be kidding me

* preliminary template/multiprompt support

model is running out of context and that ought to be fixed (segfaulting) but other than that it looks goodish

* fix zero output & param parsing, functional templating

fixed a bug where the output file had no tensor data/was all zero

fixed a bug where single hyphen flags were not being correctly parsed

implements creation of templated prompts from input (still need to adapt based on model)

* fix square_diff matmul index range and CRLF->LF line endings

fixed a logic error where square_diff would not multiply all rows

fixed a formatting error where the provided completions.txt had CRLF line endings

* add command-line args for num threads, num completions file lines, always reload model

refactored a few things and did what the commit message says on the tin

* code aestheticization

* fix compiler warnings

* in-series multithreading for prompt embedding?

added commented-out code to attempt to start implementing mutlithreading for embedding in main

* remove unnecessary multithreading

* interim fix memory leak

* translated everything but PCA (I think)

* tentatively translate the rest

* fix ggml errors and make new ones

at least it compiles and runs

* fix cb_eval

* temporary commit while I move dev environments

it finally outputs a functioning control vector - "functioning" in the sense that it can be loaded and it clearly has the right idea, but makes the model incoherent

* update debug statements

* pre-tokenize so we can allocate correct memory to ctx_diffs_wrapped

* update comments

* (wip) refactor

* clean up PCA ggml implementation

* fix shape of v_diff_original

* add n_batch for pca

* working version

* remember to copy back the last_eigenvector

* fix n_completions

* bring back n_completions

* default n_pca_batch to 20

* fix macos build

* add to makefile all targets

* use ggml_format_name

* add readme

* fix .editorconfig

* use ggml_backend_tensor_copy

* attemp to fix compile problem on mac

* fix compile warn

* reuse allocr

* move param parser to common

* better error handling

* clean up a bit

* add print_usage

* shorten help msg

* beautify help msg

* escape prompt by default

* change compile target to llama-cvector-generator

* typo

* disable GPU for PCA

* code style

---------

Co-authored-by: Christian Zhou-Zheng <christianzhouzheng@gmail.com>
2024-06-15 18:53:40 +02:00
Olivier Chafik
d4d915d351
url: save -mu downloads to new cache location (#7826)
* url: save -mu download to new cache location

* url: fs_get_cache_file_path util

* url: tweak sig of fs_get_cache_file
2024-06-08 21:21:08 +02:00
sasha0552
7a16ce7db2
server : smart slot selection using Longest Common Prefix (#7728)
* server : Smart selection of available slot using Longest Common Substring

* add usage

* remove trailing whitespaces

* Use Longest Common Prefix (LCP) instead of LCS

* Rename argument
2024-06-08 10:50:31 +03:00
Georgi Gerganov
ee459f40f6
server : fix --threads-http arg (#7801) 2024-06-06 19:19:59 +03:00
Georgi Gerganov
f83351f9a6
imatrix : migrate to gpt_params (#7771)
* imatrix : migrate to gpt_params

ggml-ci

* imatrix : add --save-frequency cli arg

* common : fix --no-ppl
2024-06-06 16:30:58 +03:00
Georgi Gerganov
1442677f92
common : refactor cli arg parsing (#7675)
* common : gpt_params_parse do not print usage

* common : rework usage print (wip)

* common : valign

* common : rework print_usage

* infill : remove cfg support

* common : reorder args

* server : deduplicate parameters

ggml-ci

* common : add missing header

ggml-ci

* common : remote --random-prompt usages

ggml-ci

* examples : migrate to gpt_params

ggml-ci

* batched-bench : migrate to gpt_params

* retrieval : migrate to gpt_params

* common : change defaults for escape and n_ctx

* common : remove chatml and instruct params

ggml-ci

* common : passkey use gpt_params
2024-06-04 21:23:39 +03:00
Georgi Gerganov
554c247caf
ggml : remove OpenCL (#7735)
ggml-ci
2024-06-04 21:23:20 +03:00
0cc4m
3d7ebf6312
Vulkan Mixture of Experts (MoE) support (#7628)
* Finish Vulkan mul_mat_id implementation

* Add Vulkan sum_rows and div ops

* Fix MUL_MAT_ID matrix matrix shader

* Fix MUL_MAT_ID matrix vector shader dispatch size

* Fix MUL_MAT_ID matrix vector shader and dispatch code

* Update Vulkan CPU offload for MUL_MAT_ID

* Fix crash when using split mode none and setting a main GPU
2024-06-03 10:59:14 +02:00
Brian
d298382ad9
main: replace --no-special with --special (#7534)
This also flips the default behavior of the output to not include control token by default.
2024-05-27 00:10:17 +10:00
Justine Tunney
00c6390793
main : don't print special tokens with --grammar (#6923)
* main : don't print special tokens with --grammar

The CLI interface was recently changed to print special control tokens
like the </s> stop message one. This token shouldn't be printed if the
grammar flag was passed, unless the grammar specifies it, because that
breaks shell-scriptability.

* main: use seperate stream for control characters

* main: use dprintf and add --ctrl-token-no-out and --ctrl-token-fd-out

* main: dprintf isn't part of the IEEE POSIX standard. Just use write().

* main: remove --ctrl-token-fd-out in favor for fcntl() based detection

* common.cpp: accidentally removed --interactive-first

* main: only merge stdout and control token if not in conversation or grammar mode

* main: rejig control token descriptor handling

* main: must check pipe status on very top of program

* main: renamed --no-special from  --ctrl-token-no-out and other refactoring

* main: refactor ctrl_token_no_out --> no_special

* llama: rename llama_token_is_control_token() to llama_token_is_control()

* main: remove special token file descriptor feature (#5)

---------

Co-authored-by: Brian <mofosyne@gmail.com>
2024-05-25 19:04:03 +10:00
Masaya, Kato
faa0e6979a
ggml: aarch64: SVE kernels for q8_0_q8_0, q4_0_q8_0 vector dot (#7433)
* Add SVE support for q4_0_q8_0 q8_0_q8_0

* remove ifdef
2024-05-25 11:42:31 +03:00
Xuan Son Nguyen
902184dd3a
fix missing slash in fs_get_cache_directory() (#7503)
* fix missing slash in fs_get_cache_directory()

* use LOCALAPPDATA for fs_get_cache_directory()

* better code style
2024-05-25 13:30:59 +10:00
Georgi Gerganov
6ff13987ad
common : normalize naming style (#7462)
* common : normalize naming style

ggml-ci

* common : match declaration / definition order

* zig : try to fix build
2024-05-22 20:04:20 +03:00
Amir
11474e756d
examples: cache hf model when --model not provided (#7353)
* examples: cache hf model when --model not provided

* examples: cache hf model when --model not provided

* examples: cache hf model when --model not provided

* examples: cache hf model when --model not provided

* examples: cache hf model when --model not provided
2024-05-21 17:13:12 +03:00
Herman Semenov
359cbe3f46
ggml-quants, llama : removed excess checks (#7274) 2024-05-17 10:08:49 +03:00
Radoslav Gerganov
5e31828d3e
ggml : add RPC backend (#6829)
* ggml : add RPC backend

The RPC backend proxies all operations to a remote server which runs a
regular backend (CPU, CUDA, Metal, etc).

* set TCP_NODELAY

* add CI workflows

* Address review comments

* fix warning

* implement llama_max_devices() for RPC

* Address review comments

* Address review comments

* wrap sockfd into a struct

* implement get_alignment and get_max_size

* add get_device_memory

* fix warning

* win32 support

* add README

* readme : trim trailing whitespace

* Address review comments

* win32 fix

* Address review comments

* fix compile warnings on macos
2024-05-14 14:27:19 +03:00
Justine Tunney
4e3880978f
Fix memory bug in grammar parser (#7194)
The llama.cpp grammar parser had a bug where forgetting to add a closing
quotation mark to strings would cause parsing to crash. Anyone running a
server on a public endpoint is advised to upgrade. To reproduce this bug

    ./llamafile -m foo.gguf -p bar --grammar 'root::="'

Credit for discovering and reporting this issue goes to Eclypsium
Security Researcher Richard Johnson <Richard.johnson@eclypsium.com>.
2024-05-10 21:01:08 +10:00
HanishKVC
f89fe2732c
Main+: optionally allow special tokens from user in interactive mode (#7097)
@hanishkvc added a new `--interactive-specials` flag which would allow for inserting special tokens from user side into the embedding stream.
2024-05-10 20:21:58 +10:00
Johannes Gäßler
c12452c7ae
JSON: [key] -> .at(key), assert() -> GGML_ASSERT (#7143) 2024-05-08 21:53:08 +02:00
Dawid Potocki
83330d8cd6
main : add --conversation / -cnv flag (#7108) 2024-05-08 17:32:32 +03:00
viric
fcd84a0f5a
Fix Linux /sys cpu path to guess number of cores (#7064) 2024-05-04 15:26:53 +02:00
Georgi Gerganov
9c67c2773d
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API

* ggml : fix GQA support in ggml_flash_attn_ext

* ggml : online attention (CPU)

* metal : initial implementation

* metal : f16 precision

* metal : reduce branches

* metal : specialize for head size

* wip : 8 rows per simd group

* wip : 4 rows per simd group

* wip : template for rows per warp

* metal : parallelize across KV size

* metal : parallel reduce across heads

* metal : efficient flash_attn_f16 implementation

* metal : avoid redundant loads of the attention

* metal : scale and mask in matrix form

* metal : fix comment

* llama : avoid ggml_cast, use F32 query

* metal : add parallel reduce version (disabled)

* metal : move output into local memory + optimize

- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments

* metal : add tests, fix scaling, support C > 32

* metal : improve precision

* ggml : fix f16 mad

* metal : minor

* metal : support Q > 8

* tests : add ATTN tests

* metal : disable buffer allocation logs

* tests : more

* metal : faster inner loop for C == 32

* metal : fix array initialization

* tests : ifdef

* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext

* ggml : fix ggml_soft_max mask requirement

* cuda : fix soft_max to use correct mask size

* cuda : add flash_attn kernel (wip)

* metal : optimize softmax for C > 32

* metal : optimize softmax

* tests : minor fix

* cuda : avoid zeroing fragments

* tests : update dims

* cuda : fix __hisinf() result check

* cuda : avoid warp_reduce for smax

* cuda : use int instead of int64_t

Noticeably improves performance (thanks to Johannes)

* cuda : make loops use the same loop values

Thanks Johannes again for the tip

* cuda : unroll some of the loops

* cuda : avoid __hisinf branches

* cuda : use half2 in softmax

* cuda : switch to 1 warp for bs > 16

* cuda : speed-up reduce part of the kernel

* cuda : unroll Q*K^T loop

* cuda : fix -INF block check

* cuda : simplify softmax

* cuda : fix matrix names

* cuda : minor

* llama : adapt to F16 KQ_pos

* llama : adapt new models to F16 KQ_mask

* ggml : fix F16 store (ARM NEON)

* llama : fix type of KQ_mask and KQ_pos

* ggml : fix CPU soft_max

* tests : add hs=256

* cuda : fix build

* metal : improve perf via smaller int registers

* cuda : adapt soft_max to F16 mask and pos

* CUDA: faster FlashAttention, kernel for bs == 1

* 16 cols for Phi-2

* no vec for hs, no hs==256 ncols==32 for Volta

* adjust kernel selection logic

* 4 warps, 256 stride for all D

* no ncols == 64

* Multiple parallel blocks for batch size 1

* fix compile warnings

* fix excessive KQ_b loads

* fix cmake build

* fix KV cache padding, NaN from INFINITY (#6438)

* llama : flash_attn cparam + fix defrag

* server: support flash_attn param

* server: bench: enable flash_attn param

* CUDA: refactor host code, dyn. par. blocks

* fix flash_attn_vec_f16 race condition

* flush softmax exp below threshold to 0

* store temp KQ in registers

* Calculate KQ as FP32 if KQV has GGML_PREC_F32

* Add __hgt2_mask implementation for CUDA 11

* fix KQ FP32 precision fpr parallel_blocks > 1

* llama-bench : add -fa,--flash-attn arg

* metal : add BS=1 kernel for flash attention (#6508)

* metal : add BS=1 kernel for flash attention (wip)

* metal : support more than 1 warps

* metal : opts

* metal : opt

* metal : switch to parallel reduce

* metal : reduce registers

* metal : simplify

* metal : initial FA vec kernel

* metal : use F32 attention accumulators

* batched-bench : add fattn arg

* llama : simplify llama_build_kv_store

ggml-ci

* llama : adapt build_olmo to changes

* ggml : fix arm fp16 store on windows

* metal : clean-up

* metal : clean-up kernel code

* metal : minor

* tests : remove benchmarks

ggml-ci

* ggml : fix avx512 const correctness

ggml-ci

* ggml : fix soft_max with bias on CPU

ggml-ci

* common : print --flash-attn in help

* ggml : fix num dimensions in ggml_flash_attn_ext

* llama : force disable flash attention for incompatible models

* ggml : ggml_soft_max support F16/F32 mask/pos

ggml-ci

* cuda : uint -> uint32_t

* cuda : "constexpr dim3" -> "const dim3"

ggml-ci

* cuda : try to fix __hgt2_mask

ggml-ci

* ggml : add TODO's for F16/F32 mask/pos support in other backends

* llama : replace bool need_kq_pos with use_alibi

* llama : prep ALiBi support for BERT models

ggml-ci

* llama : fix n_batch requirements

ggml-ci

* cont

* server : add help for --flash-attn arg

* llama : disable FA for AMD

* tests : remove TMP_ATTN_BENCH

ggml-ci

* llama : support save/load state with FA enabled

ggml-ci

* ci : add CUDA save-load-state tests

ggml-ci

* llama : llama_kv_cache_clear zeroes data + fix save-load seq

ggml-ci

* llama : fix copy-paste errors, add TODO

* llama : disallow incompatible states

* llama : update llama_state_get_size after v_trans field

* metal : remove tmp log

* llama : add static reminder for llama_state_get_size

* metal : fix max nsg

ggml-ci

* ci : fix arg order

ggml-ci

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
Olivier Chafik
8843a98c2b
Improve usability of --model-url & related flags (#6930)
* args: default --model to models/ + filename from --model-url or --hf-file (or else legacy models/7B/ggml-model-f16.gguf)

* args: main & server now call gpt_params_handle_model_default

* args: define DEFAULT_MODEL_PATH + update cli docs

* curl: check url of previous download (.json metadata w/ url, etag & lastModified)

* args: fix update to quantize-stats.cpp

* curl: support legacy .etag / .lastModified companion files

* curl: rm legacy .etag file support

* curl: reuse regex across headers callback calls

* curl: unique_ptr to manage lifecycle of curl & outfile

* curl: nit: no need for multiline regex flag

* curl: update failed test (model file collision) + gitignore *.gguf.json
2024-04-30 00:52:50 +01:00
cpumaxx
ffe666572f
llava-cli : multiple images (#6969)
Co-authored-by: root <root@nenya.lothlorien.ca>
2024-04-29 17:34:24 +03:00
Georgi Gerganov
f4ab2a4147
llama : fix BPE pre-tokenization (#6920)
* merged the changes from deepseeker models to main branch

* Moved regex patterns to unicode.cpp and updated unicode.h

* Moved header files

* Resolved issues

* added and refactored unicode_regex_split and related functions

* Updated/merged the deepseek coder pr

* Refactored code

* Adding unicode regex mappings

* Adding unicode regex function

* Added needed functionality, testing remains

* Fixed issues

* Fixed issue with gpt2 regex custom preprocessor

* unicode : fix? unicode_wstring_to_utf8

* lint : fix whitespaces

* tests : add tokenizer tests for numbers

* unicode : remove redundant headers

* tests : remove and rename tokenizer test scripts

* tests : add sample usage

* gguf-py : reader prints warnings on duplicate keys

* llama : towards llama3 tokenization support (wip)

* unicode : shot in the dark to fix tests on Windows

* unicode : first try custom implementations

* convert : add "tokenizer.ggml.pre" GGUF KV (wip)

* llama : use new pre-tokenizer type

* convert : fix pre-tokenizer type writing

* lint : fix

* make : add test-tokenizer-0-llama-v3

* wip

* models : add llama v3 vocab file

* llama : adapt punctuation regex + add llama 3 regex

* minor

* unicode : set bomb

* unicode : set bomb

* unicode : always use std::wregex

* unicode : support \p{N}, \p{L} and \p{P} natively

* unicode : try fix windows

* unicode : category support via std::regex

* unicode : clean-up

* unicode : simplify

* convert : add convert-hf-to-gguf-update.py

ggml-ci

* lint : update

* convert : add falcon

ggml-ci

* unicode : normalize signatures

* lint : fix

* lint : fix

* convert : remove unused functions

* convert : add comments

* convert : exercise contractions

ggml-ci

* lint : fix

* cmake : refactor test targets

* tests : refactor vocab tests

ggml-ci

* tests : add more vocabs and tests

ggml-ci

* unicode : cleanup

* scripts : ignore new update script in check-requirements.sh

* models : add phi-3, mpt, gpt-2, starcoder

* tests : disable obsolete

ggml-ci

* tests : use faster bpe test

ggml-ci

* llama : more prominent warning for old BPE models

* tests : disable test-tokenizer-1-bpe due to slowness

ggml-ci

---------

Co-authored-by: Jaggzh <jaggz.h@gmail.com>
Co-authored-by: Kazim Abrar Mahi <kazimabrarmahi135@gmail.com>
2024-04-29 16:58:41 +03:00
Pierrick Hymbert
0c4d489e29
quantize: add imatrix and dataset metadata in GGUF (#6658)
* imatrix: save the dataset file used in the output file

* llama: support kv overrides type string string

* common: factorize KV Overrides parsing between common and server

* quantize: add imatrix n entries and dataset KV metadata
quantize: factorize KV Overrides parsing between common
#6656

* llama: remove kv override str_value initialization as it does not compile on some toolchain

* quantize: add imatrix m_last_call as `quantize.imatrix.chunks_count`

* quantize: add imatrix filename in KV

* llama: add llama_model_kv_override_free

* common: add llama_model_kv_override_free
common: free kv override if used after model loading

* llama: finally move the string KV override value to the stack

* llama : minor

* no need to add a NUL to the std::vector, std::string can be initialized from a pair of iterators.

Co-authored-by: slaren <slarengh@gmail.com>

* kv override: ensure string termination

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-04-26 20:06:33 +02:00
slaren
017e6999b5
add basic tensor data validation function (#6884)
* add basic tensor data validation function

* add --check-tensors command line argument

tensor validation is disabled by default and can be enabled by adding
`--check-tensors` to the command line arguments.

quantize always validates tensors.
2024-04-26 18:39:58 +02:00
Kyle Mistele
37246b1031
common : revert showing control tokens by default for server (#6860)
* fix: revert showing control tokens by default

* feat: revert changes to default behavior of llama_token_to_piece; provide overridden declaration to receive "bool special" param to toggle showing control tokens

* feat: use the overridden declaration of llama_token_to_piece from common/common.cpp to specify "false" so that control tokens are not shown in chat completion responses"

* common : simplify

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-24 13:15:29 +03:00
Johannes Gäßler
28103f4832
Server: fix seed for multiple slots (#6835)
* Server: add tests for consistent results

* sampling: separate rng per sampling context
2024-04-24 11:08:36 +02:00
Georgi Gerganov
40f74e4d73
llama : add option to render special/control tokens (#6807)
* make : fix common dep on llama.h

* llama : add option to render special tokens

* readme : add API change notice

ggml-ci

* swift : fix build
2024-04-21 18:36:45 +03:00
Georgi Gerganov
aed82f6837
common : try to fix Android CI (#6780)
* common : disable get_math_cpu_count() until Android CI gets fixed

* common : another try
2024-04-20 13:27:12 +03:00
Justine Tunney
8cc91dc63c
ggml : add llamafile sgemm (#6414)
This change upstreams llamafile's cpu matrix multiplication kernels
which improve image and prompt evaluation speed. For starters, Q4_0
and Q8_0 weights should go ~40% faster on CPU. The biggest benefits
are with data types like f16 / f32, which process prompts 2x faster
thus making them faster than quantized data types for prompt evals.

This change also introduces bona fide AVX512 support since tinyBLAS
is able to exploit the larger register file. For example, on my CPU
llama.cpp llava-cli processes an image prompt at 305 tokens/second,
using the Q4_K and Q4_0 types, which has always been faster than if
we used f16 LLaVA weights, which at HEAD go 188 tokens/second. With
this change, f16 LLaVA performance leap frogs to 464 tokens/second.

On Intel Core i9-14900K this change improves F16 prompt perf by 5x.
For example, using llama.cpp at HEAD with Mistral 7b f16 to process
a 215 token prompt will go 13 tok/sec. This change has fixes making
it go 52 tok/sec. It's mostly thanks to my vectorized outer product
kernels but also because I added support for correctly counting the
number of cores on Alderlake, so the default thread count discounts
Intel's new efficiency cores. Only Linux right now can count cores.

This work was sponsored by Mozilla who's given permission to change
the license of this code from Apache 2.0 to MIT. To read more about
what's improved, and how it works, see: https://justine.lol/matmul/
2024-04-16 21:55:30 +03:00
Olivier Chafik
7593639ce3
main: add --json-schema / -j flag (#6659)
* main: add --json-schema / -j

* json: move json-schema-to-grammar to common lib

* json: fix zig build
2024-04-15 18:35:21 +01:00
Pierrick Hymbert
b804b1ef77
eval-callback: Example how to use eval callback for debugging (#6576)
* gguf-debug: Example how to use ggml callback for debugging

* gguf-debug: no mutex, verify type, fix stride.

* llama: cv eval: move cb eval field in common gpt_params

* ggml_debug: use common gpt_params to pass cb eval.
Fix get tensor SIGV random.

* ggml_debug: ci: add tests

* ggml_debug: EOL in CMakeLists.txt

* ggml_debug: Remove unused param n_batch, no batching here

* ggml_debug: fix trailing spaces

* ggml_debug: fix trailing spaces

* common: fix cb_eval and user data not initialized

* ci: build revert label

* ggml_debug: add main test label

* doc: add a model: add a link to ggml-debug

* ggml-debug: add to make toolchain

* ggml-debug: tests add the main label

* ggml-debug: ci add test curl label

* common: allow the warmup to be disabled in llama_init_from_gpt_params

* ci: add curl test

* ggml-debug: better tensor type support

* gitignore : ggml-debug

* ggml-debug: printing also the sum of each tensor

* ggml-debug: remove block size

* eval-callback: renamed from ggml-debug

* eval-callback: fix make toolchain

---------

Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-11 14:51:07 +02:00
Jared Van Bortel
1b67731e18
BERT tokenizer fixes (#6498)
Key changes:
* BERT conversion: fix abuse of LlamaHfVocab, do not set BOS or EOS
* Nomic Embed conversion: pad vocab instead of slicing embedding tensor
* llama_tokenize: handle added special tokens like HF does
2024-04-09 13:44:08 -04:00
Jan Boon
beea6e1b16
llama : save and restore kv cache for single seq id (#6341)
* llama : save and restore kv cache for single seq id

* remove trailing whitespace

* respond error in case there's no space in the kv cache

* add kv seq save restore to test case

* add --slot-save-path arg to enable save restore and restrict save location

* Returning 0 for some cases, instead of asserting.

* cleanup error cases

* rename sequence state functions

* rename state get set functions

* add previous function names back in with DEPRECATED notice

* update doc

* adjust endpoints to preferred style

* fix restoring zero cell count

* handle seq rm return value

* unused param

* keep in the size check

* fix return types

* add server test case for slot save restore

* cleanup

* add cake

* cleanup style

* add special

* removing a whole sequence never fails

* move sequence state file functionality from server to llama to match session api and add version tags

* catch exceptions on save as well

* error log messages

* check types for stricter restore

* update server doc

* readme : update API changes date

* strict filename validation

* move include, reject bom as well

* also reject empty filename

* reject whitespace and trailing dot

---------

Co-authored-by: Martin Evans <martindevans@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-08 15:43:30 +03:00
Daniel Bevenius
4bcd6b959c
common: remove duplicate check for curl (#6471)
This commit removes one of the two identical checks for curl being NULL
in llama_load_model_from_url.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-04-04 09:49:21 +02:00
Sigbjørn Skjæret
e562b9714b
common : change --no-penalize-nl to --penalize-nl (#6334)
* Change --no-penalize-nl to --penalize-nl

* Update documentation too
2024-03-27 09:23:10 +02:00
slaren
280345968d
cuda : rename build flag to LLAMA_CUDA (#6299) 2024-03-26 01:16:01 +01:00
Minsoo Cheong
64e7b47c69
examples : add "retrieval" (#6193)
* add `retrieval` example

* add README

* minor fixes

* cast filepos on print

* remove use of variable sized array

* store similarities in separate vector

* print error on insufficient batch size

* fix error message printing

* assign n_batch value to n_ubatch

* fix param definitions

* define retrieval-only parameters in retrieval.cpp

* fix `--context-file` option to be provided multiple times for multiple files

* use vector for `query_emb`

* add usage description in README

* fix merge conflict

* fix usage printing

* remove seed setting

* fix lint

* increase file read buffer size

* retrieval : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-25 09:38:22 +02:00
Pierrick Hymbert
f482bb2e49
common: llama_load_model_from_url split support (#6192)
* llama: llama_split_prefix fix strncpy does not include string termination
common: llama_load_model_from_url:
 - fix header name case sensitive
 - support downloading additional split in parallel
 - hide password in url

* common: EOL EOF

* common: remove redundant LLAMA_CURL_MAX_PATH_LENGTH definition

* common: change max url max length

* common: minor comment

* server: support HF URL options

* llama: llama_model_loader fix log

* common: use a constant for max url length

* common: clean up curl if file cannot be loaded in gguf

* server: tests: add split tests, and HF options params

* common: move llama_download_hide_password_in_url inside llama_download_file as a lambda

* server: tests: enable back Release test on PR

* spacing

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* spacing

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* spacing

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-23 18:07:00 +01:00
Johannes Gäßler
50ccaf5eac
lookup: complement data from context with general text statistics (#5479)
* lookup: evaluation tools, use corpus/previous gens

* fixup! lookup: evaluation tools, use corpus/previous gens

* fixup! lookup: evaluation tools, use corpus/previous gens

* fixup! lookup: evaluation tools, use corpus/previous gens

* fixup! lookup: evaluation tools, use corpus/previous gens
2024-03-23 01:24:36 +01:00
Georgi Gerganov
56a00f0a2f
common : default --hf-file to --model (#6234) 2024-03-22 21:10:39 +02:00
Georgi Gerganov
80bd33bc2c
common : add HF arg helpers (#6234)
* common : add HF arg helpers

* common : remove defaults
2024-03-22 15:33:38 +02:00
Georgi Gerganov
95d576b48e
metal : pad n_ctx by 32 (#6177)
* metal : require ne00 >= 128 for mat-mat kernels

ggml-ci

* llama : pad n_ctx by 32

ggml-ci
2024-03-22 09:36:03 +02:00
DAN™
fa046eafbc
Fix params underscore convert to dash. (#6203)
* Fix params underscore convert to dash.

* Update common/common.cpp

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-03-22 02:32:42 +01:00
Kawrakow
76aa30a263
Add ability to use Q5_0, Q5_1, and IQ4_NL for quantized K cache (#6183)
* k_cache: be able to use Q5_0

* k_cache: be able to use Q5_1 on CODA

* k_cache: be able to use Q5_0 on Metal

* k_cache: be able to use Q5_1 on Metal

* k_cache: be able to use IQ4_NL - just CUDA for now

* k_cache: be able to use IQ4_NL on Metal

* k_cache: add newly added supported types to llama-bench and CUDA supports_op

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-21 08:27:57 +01:00
DAN™
4c28b82529
common : print usage on '-h' and '--help' (#6145) 2024-03-19 07:59:36 +02:00
DAN™
496bc79bc2
common : tidy-up argument parsing (#6105)
* Tidy-up argument parsing.

* Missing ref.

* common : minor

* common : add static classifier

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-18 10:27:44 +02:00
Pierrick Hymbert
d01b3c4c32
common: llama_load_model_from_url using --model-url (#6098)
* common: llama_load_model_from_url with libcurl dependency

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-17 19:12:37 +01:00
DAN™
15961ec04d
common : refactor nested if causing error C1061 on MSVC (#6101)
* Refactor nested if causing error C1061 on MSVC.

* Revert back and remove else's.

* Add flag to track found arguments.
2024-03-16 17:39:15 +02:00
Theia Vogel
877b4d0c62
llama : add support for control vectors (#5970)
* control vector api and implementation

* control-vectors : minor code style updates

* disable control vector when data == nullptr

use -1 for disabled range (also on init) in case we ever support controlling layer 0 (embeddings)

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-15 22:43:02 +02:00
Georgi Gerganov
0fd6c1f015
embedding : print cosine similarity (#899) 2024-03-14 10:12:29 +02:00
slaren
f30ea47a87
llama : add pipeline parallelism support (#6017)
* llama : add pipeline parallelism support for batch processing with multiple CUDA GPUs

ggml-ci

* server : add -ub, --ubatch-size parameter

* fix server embedding test

* llama : fix Mamba inference for pipeline parallelism

Tested to work correctly with both `main` and `parallel` examples.

* llama : limit max batch size to n_batch

* add LLAMA_SCHED_MAX_COPIES to configure the number of input copies for pipeline parallelism
default increase to 4 (from 2)

changing this value may improve performance for some systems, but increases memory usage

* fix hip build

* fix sycl build (disable cpy_tensor_async)

* fix hip build

* llama : limit n_batch and n_ubatch to n_ctx during context creation

* llama : fix norm backend

* batched-bench : sync after decode

* swiftui : sync after decode

* ggml : allow ggml_get_rows to use multiple threads if they are available

* check n_ubatch >= n_tokens with non-casual attention

* llama : do not limit n_batch to n_ctx with non-casual attn

* server : construct batch with size of llama_n_batch

* ggml_backend_cpu_graph_compute : fix return value when alloc fails

* llama : better n_batch and n_ubatch comment

* fix merge

* small fix

* reduce default n_batch to 2048

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-13 18:54:21 +01:00
Georgi Gerganov
05b06210c9
llama : more consistent names of count variables (#5994)
* llama : more consistent names of count variables

ggml-ci

* llama : n_parallel -> n_seq_max

* common : fix param name

* examples : fix param name
2024-03-11 17:49:47 +02:00
SeungWon Jeong
fb215c3832
server : normalize embeddings (#5956)
* output normalize embedding in '/v1/embeddings'

* common : reuse llama_embd_normalize

* common : better normalize impl

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-09 14:27:58 +02:00
compilade
c2101a2e90
llama : support Mamba Selective State Space Models (#5328)
* mamba : begin working on support for Mamba SSM

* mamba : begin figuring out how to (ab)use the kv cache for Mamba

* mamba : recurrent inference almost works, but incoherent

* mamba : recurrent inference WORKS!!!

* convert : optionally use d_conv and d_state from config.json for Mamba

* mamba : refactor recurrent conv, resulting in 20% perf increase

It's still slower than I'd like, but I did not really optimize `ggml_exp` yet.

I also refactored `ggml_exp` to work with tensors with more than 2 dimensions.

* ggml : parallelize ggml_exp

This results in 8% faster token generation for Mamba-130M.

* mamba : simplify the conv step with a self-overlapping view

Turns out the conv_state can be made smaller by one column.
Note that this breaks existing GGUFs of Mamba,
because the key_value_length field is tied to the conv_state size.

Convolution with a self-overlapping view is cool!
And it's much simpler than what I initially thought would be necessary
to make the convolution step work with more than 1 token at a time.

Next step is to make the SSM step work on batches of tokens too,
and thus I need to figure out a way to make a parallel selective scan
which will keep the ssm_state small and won't make it bigger
by a factor of (n_layer * batch_size).

* llama : fix Mamba KV self size wrongly displaying as f16 instead of f32

Relatedly, I also tried to see if other types than f32 worked for the states,
but they don't, because of the operators used.
It's probably better anyway to keep lots of precision there,
since the states are small anyway.

* mamba : fix self-overlapping view depth stride

* mamba : handle batches of more than 1 token

This means running Mamba no longer crashes when using the default settings!
And probably also slightly faster prompt processing.
Both batched and non-batched processing yield the same output.

Previously, the state was not cleared when starting a sequence.
Next step is to make the KV cache API work as expected for Mamba models.

* ggml: add ggml_ssm_scan to help with parallel selective scan

If the selective scan was implemented without a custom operator,
there would be waaay too many nodes in the graph. For example,
for Mamba-130M, with a batch size of 512 (the default),
a naive selective scan could add at least 24*512=12288 nodes,
which is more than LLAMA_MAX_NODES (8192),
and that's only for the smallest Mamba model.
So it's much cleaner with a custom operator.
Not sure about the name, though.

* ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation

This will help with performance on CPU if ggml_vec_mul_f32
and ggml_vec_add_f32 are ever optimized with SIMD.

* mamba : very basic quantization support

Mostly works, but there is currently no difference
between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same).
Most of the SSM-specific weights can be kept in f32 without affecting
the size that much, since they are relatively small.
(the linear projection weights are responsible for most of Mamba's size)

Too much quantization seems to make the state degrade quite fast, and
the model begins to output gibberish.
It seems to affect bigger models to a lesser extent than small models,
but I'm not sure by how much.

Experimentation will be needed to figure out which weights are more important
for the _M (and _L?) variants of k-quants for Mamba.

* convert : fix wrong name for layer norm weight of offical Mamba models

I was using Q-bert/Mamba-* models before, which have a slighlty different
naming scheme for the weights.
(they start with "model.layers" instead of "backbone.layers")

* mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator

This increases performance on CPU by around 30% for prompt processing,
and by around 20% for text generation.

However, it also makes the ggml_exp and ggml_soft_plus operators unused.
Whether or not they should be kept will be decided later.

* convert : for Mamba, also consider the "MambaLMHeadModel" arch name

It's the name of the class of the official implementation,
though they don't use it (yet) in the "architectures" field of config.json

* mamba : fix vocab size problems with official models

The perplexity was waaaay to high for models with a non-round vocab size.
Not sure why, but it needed to be fixed in the metadata.

Note that this breaks existing GGUF-converted Mamba models,
but **only if** the vocab size was not already rounded.

* ggml : remove ggml_exp and ggml_soft_plus

They did not exist anyway outside of this branch,
and since ggml_ssm_scan fused operations together, they are unused.
It's always possible to bring them back if needed.

* mamba : remove some useless comments

No code change.

* convert : fix flake8 linter errors

* mamba : apply suggestions from code review

* mamba : remove unecessary branch for row-wise ssm_state and C multiplication

It was previously done to avoid permuting when only one token is processed
at a time (like when generating text), but permuting is cheap,
and dynamically changing the compute graph is not future-proof.

* ggml : in ggml_ssm_scan, use more appropriate asserts

* ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32

* mamba : multiple sequences, but one at a time

This is a step towards making this Mamba implementation usable
with the server example (the way the system prompt is kept when clearing
the client slots will need to be changed before this can work, though).

The KV cache size for this kind of model is tied to the maximum number
of sequences kept at any single time.
For now, this number is obtained from n_parallel (plus one,
to have an extra sequence to dedicate to the system prompt),
but there might be a better way to do this which won't also
make the main example use 2 cells even if only 1 is really used.
(for this specific case, --parallel 0 helps)

Simultaneous sequence processing will probably require changes to
ggml_ssm_scan, and possibly a new operator for the conv step.

* mamba : support llama_kv_cache_seq_cp

This (mis)uses the logic around K shifts, because tokens in a state
can't be shifted anyway, and because inp_K_shift has the right shape and type.
Using ggml_get_rows is a nice way to do copies, but copy chains can't work.
Fortunately, copy chains don't really seem to be used in the examples.

Each KV cell is dedicated to the sequence ID corresponding to its own index.

* mamba : use a state mask

It's cleaner than the previous heuristic of
checking for the pos of the first token in the batch.

inp_KQ_mask could not be re-used for this, because it has the wrong shape
and because it seems more suited to the next step of
simultaneous sequence processing (helping with the problem of
remembering which token belongs to which sequence(s)/state(s)).

* llama : replace the usage of n_ctx with kv_self.size in many places

* mamba : use n_tokens directly instead of n_tok

* mamba : in comments, properly refer to KV cells instead of slots

* mamba : reduce memory usage of ggml_ssm_scan

From 290.37 MiB to 140.68 MiB of CPU compute buffer size
with Mamba 3B with a batch size of 512.

The result tensor of ggml_ssm_scan was previously a big part
of the CPU compute buffer size. To make it smaller,
it does not contain the intermediate ssm states anymore.
Both y and the last ssm state are combined in the result tensor,
because it seems only a single tensor can be returned by an operator
with the way the graph is built.

* mamba : simultaneous sequence processing

A batch can now contain tokens from multiple sequences.

This is necessary for at least the parallel example, the server example,
and the HellaSwag test in the perplexity example.

However, for this to be useful, uses of llama_kv_cache_seq_rm/cp
will need to be changed to work on whole sequences.

* ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba

This operator makes it possible to use and update the correct states
for each token of the batch in the same way as ggml_ssm_scan.
Other solutions which use existing operators would need loops which would
add too many nodes to the graph (at least the ones I thought of).

Using this operator further reduces the size of the CPU compute buffer
from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512.
And (at least on CPU), it's a bit faster than before.

Note that "ggml_ssm_conv" is probably not the most appropriate name,
and it could be changed if a better one is found.

* llama : add inp_s_seq as a new input tensor

The most convenient implementation to select the correct state (for Mamba)
for each token is to directly get the correct index from a tensor.
This is why inp_s_seq is storing int32_t and not floats.

The other, less convenient way to select the correct state would be
to have inp_KQ_mask contain 1.0f for each state used by a token
and 0.0f otherwise. This complicates quickly fetching the first used
state of a token, and is also less efficient because a whole row
of the mask would always need to be read for each token.

Using indexes makes it easy to stop searching when there are
no more sequences for a token, and the first sequence assigned
is always very quickly available (it's the first element of each row).

* mamba : support llama_kv_cache_seq_cp copy chains

* mamba : support shifting and dividing the kv cache pos

* mamba : make the server and parallel examples work with whole sequences

A seq_id is dedicated to the system prompt in both cases.

* llama : make llama_kv_cache_seq_rm return whether it succeeded or not

* mamba : dedicate an input tensor for state copy indices

This is cleaner and makes it easier to adapt when/if token positions
(and by extension, inp_K_shift) are no longer integers.

* mamba : adapt perplexity, batched, and batched-bench examples

* perplexity : limit the max number of sequences

This adapts to what the loaded model can provide.

* llama : add llama_n_max_seq to get the upper limit for seq_ids

Used by the perplexity example.

* batched : pass n_parallel to the model's context params

This should have been there already, but it wasn't.

* batched-bench : reserve sequences to support Mamba

* batched-bench : fix tokens being put in wrong sequences

Generation quality isn't what's measured in there anyway,
but at least using the correct sequences avoids using non-consecutive
token positions.

* mamba : stop abusing attention metadata

This breaks existing converted-to-GGUF Mamba models,
but will allow supporting mixed architectures like MambaFormer
without needing to break Mamba models.

This will also allow changing the size of Mamba's states
without having to reconvert models in the future.
(e.g. using something else than d_conv - 1 columns for the conv_states
 will not require breaking existing converted Mamba models again)

* gguf-py : add new KV metadata key-value pairs for Mamba

* llama : add new metadata key-value pairs for Mamba

* llama : guard against divisions by zero when n_head is 0

* mamba : rename "unlimited" KV cache property to "recurrent"

* mamba : more correctly update the "used" field of the KV cache

* ggml : in ggml_ssm_scan, use a threshold for soft_plus

This is how the official Mamba implementation does it,
and it's also what torch.nn.Softplus does.

* convert : for Mamba, fallback to internal NeoX tokenizer

The resulting models are exactly the same
as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there.

* mamba : support state saving and restoring

* ggml : implicitly pass src tensors through dst for Mamba-related ops

* mamba : clarify some comments

* server : fix cache_tokens not getting correctly resized

Otherwise, when the "we have to evaluate at least 1 token" special case
was triggered, an extra token was kept in cache_tokens even if it was
removed from the KV cache.

For Mamba, this caused useless prompt reprocessing when the previous
request triggered the above case.

* convert-hf : support new metadata keys for Mamba

For the models available at
https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406

* mamba : rename metadata to be more similar to transformers library

This breaks existing converted-to-GGUF models,
but the metadata names are more "standard".

* mamba : support mamba-*-hf models

These models share their token_embd.weight with their output.weight

* mamba : add missing spaces

This is purely a formatting change.

* convert-hf : omit output.weight when identical with token_embd.weight

Only for Mamba for now, but it might be relevant for other models eventually.
Most Mamba models actually share these two tensors, albeit implicitly.

* readme : add Mamba to supported models, and add recent API changes

* mamba : move state_seq and state_mask views outside layer loop

A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 17:31:00 -05:00
Georgi Gerganov
29ae62d2ae
llama : fix embeddings (#5796)
* llama : fix embeddings

ggml-ci

* llama : do not use KV cache for non-causal models

ggml-ci

* embeddings : fix llama_batch_init arg

* llama : add pooling switch

* llama : distinguish token vs sequence embeddings

ggml-ci

* llama : assert pooling tensor

* llama : simplify causal mask condition

ggml-ci

* llama : assert input batch with pooling enabled

* readme : update API changes list
2024-03-04 22:31:20 +02:00
Minsoo Cheong
6d341ab6c5
speculative : implement stochastic speculative sampling (#5625)
* (WIP) Implement stochastic speculative decoding

* sample from residual distribution on draft accept failure

* fix #5657: force greedy sampling with probs when temp is 0

* remove p_accept parameter

* fix style

* remove unused variables

* add srand() in speculative.cpp

* replace use of rand() with mt19937 sampling

* fixes based on review (@JohannesGaessler)

* fix r random generation

* randomly select next sequence to verify + fix bug in memory freeing

* fix bug in active_seqs sync

* fix uniform int distribution initialization

* remove warnings from comparison between int and size_t

* check grammar in `llama_sample_probability_distribution_impl`

* remove malloc code by utilizing vectors

* add PR link to README
2024-03-04 20:24:00 +02:00
Douglas Hanley
475df1d6cf
llama : allow for user specified embedding pooling type (#5849)
* allow for user specified pooling type

* llama : use enum types over int

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-03 12:40:27 +02:00
Neo Zhang Jianyu
715641391d
Support multiple GPUs (split mode) on SYCL backend (#5806)
* suport multiple cards: split-mode - layer|row

* rm warning

* rebase with master, support tow new OPs, close feature for -sm=row, fix for unit test

* update news

* fix merge error

* update according to review comments
2024-03-02 19:49:30 +08:00
Miwa / Ensan
f49a535686
common : fix flag --logits-all to --all-logits (#5805) 2024-03-01 15:48:56 +02:00
Pierrick Hymbert
3ab8b3a92e
llama : cleanup unused mmq flags (#5772)
* cleanup unused --no-mul-mat-q,-nommq, -mmq, --mul-mat-q, mul_mat_q

* remove: mul_mat_q in compare llama bench and usage

* update llama-bench

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-03-01 13:39:06 +02:00
Georgi Gerganov
9d533a77d0
llama : fix defrag bugs + add parameter (#5735)
* llama : fix defrag bugs + enable by default

ggml-ci

* llama : add defrag_thold parameter

ggml-ci

* llama : cont

* llama : disable log message

ggml-ci

* llama : fix graph size check during defrag
2024-02-27 14:35:51 +02:00
Georgi Gerganov
ab336a9d5e
code : normalize enum names (#5697)
* coda : normalize enum names

ggml-ci

* code : cont

* code : cont
2024-02-25 12:09:09 +02:00
Robey Holderith
5ee99c32f5
common, server : surface min_keep as its own parameter (#5567)
* Feature - surface min_keep as its own parameter

* Updated README with min_keep param
2024-02-18 21:11:16 +02:00
Georgi Gerganov
1dcc3fde00
common : fix ub (#5530) 2024-02-18 18:21:52 +02:00
Herman Semenov
5d3de51f97
ggml, common, examples, tests : fixed type arguments in printf (#5528) 2024-02-18 18:20:12 +02:00
Alexey Parfenov
6dcc02d244
server : add "samplers" param to control the samplers order (#5494) 2024-02-16 13:33:25 +02:00
bmwl
f486f6e1e5
ggml : add numa options (#5377)
* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h

* Reverted Makefile

* Fixed include

* Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables

* removed trailing whitespace

* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h

* Reverting Makefile

* Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet

* Removing MIRROR_MODE code for this PR

* Removing last bit of MIRROR_MODE code for this PR

* Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static

* Fixed lingering init_llama_backend() bool calls in tests and examples

* Remote enum llama_numa_strategies

* Revert bad merge with dynatemp flags

* add missing enum ggml_numa_strategies declaration and revert sync problem with master

* add missing enum ggml_numa_strategies declaration

* fixed ggml_init_numa variable

* Update ggml.h

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges

* split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples

* Fix up some boolean vs enum comparisons

* Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype

* Update ggml.h

Align enum values

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml.c

Remove whitespace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml.c

align paremeters

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/server/server.cpp

remove whitespace and align brace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update common/common.cpp

Remove whitespace and align brace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* unified ggml_numa_strategy enum and fixed text alignment in server.cpp example

* Update ggml.c

simplified return for platforms without NUMA support

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* removed redundant else from cli argument processing of --numa

* whitespace

---------

Co-authored-by: root <root@nenya.lothlorien.ca>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 11:31:07 +02:00
Alexey Parfenov
a803333a4e
common : use enums for sampler types (#5418)
* common: use enums for sampler types

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* minor : spaces

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-11 15:43:31 +02:00
snadampal
a07d0fee1f
ggml : add mmla kernels for quantized GEMM (#4966)
* ggml: aarch64: implement smmla kernel for q8_0_q8_0 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q8_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: aarch64: implement smmla kernel for q4_0_q8_0 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: aarch64: implement smmla kernel for q4_1_q8_1 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_1_q8_1 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: update unit tests for the new vec_dot interface

* llama.cpp: add MATMUL_INT8 capability to system_info
2024-02-11 15:22:33 +02:00
0cc4m
ee1628bdfe
Basic Vulkan Multi-GPU implementation (#5321)
* Initial Vulkan multi-gpu implementation

Move most global variables into backend context

* Add names to backend device functions

* Add further missing cleanup code

* Reduce code duplication in tensor split layer assignment

* generalize LLAMA_SPLIT_LAYER for all backends, do not expose device count and memory in llama.h

* Only do device info print in the beginning and initialize one backend for cpu assist

Add missing cleanup code

* Rework backend memory management to make sure devices and buffers get properly allocated and freed

* Rename cpu assist free function

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-07 07:54:50 +01:00