* metal : add kernel arg structs (wip)
* metal : fattn args
ggml-ci
* metal : cont + avoid potential int overflow [no ci]
* metal : mul mat struct (wip)
* cont : mul mat vec
* cont : pass by reference
* cont : args is first argument
* cont : use char ptr
* cont : shmem style
* cont : thread counters style
* cont : mul mm id
ggml-ci
* cont : int safety + register optimizations
ggml-ci
* metal : GGML_OP_CONCAT
ggml-ci
* metal : GGML_OP_ADD, GGML_OP_SUB, GGML_OP_MUL, GGML_OP_DIV
* metal : GGML_OP_REPEAT
* metal : GGML_OP_CPY
* metal : GGML_OP_RMS_NORM
* metal : GGML_OP_NORM
* metal : add TODOs for rest of ops
* ggml : add ggml-metal-impl.h
ggml-ci
Compute two result elements per workgroup (for Q{4,5}_{0,1}). This reuses
the B loads across the rows and also reuses some addressing calculations.
This required manually partially unrolling the loop, since the compiler
is less willing to unroll outer loops.
Add bounds-checking on the last iteration of the loop. I think this was at
least partly broken before.
Optimize the Q4_K shader to vectorize most loads and reduce the number of
bit twiddling instructions.
* use 128 bit loads (i've tried 256->128 to death and its slower)
* double accumulator
* avx bf16 vec dot
* +3% q4_0 inference
* +7% tg +5% pp compared to master
* slower f16c version, kep for reference
* 256b version, also slow. i tried :)
* revert f16
* faster with madd
* split to functions
* Q8_0 and IQ4_NL, 5-7% faster
* fix potential overflow (performance reduced)
* 16 bit add for q4_0 only
* merge
* sycl: Use syclcompat::dp4a
* Using the syclcompat version allow the compiler to optimize the
operation with native function
* Update news section
* Update CI Windows oneAPI version to 2025.0
* Reword doc
* Call syclcompat::dp4a inside dpct::dp4a
This reverts commit 90cb61d692.
Reuse the index calculations across all of src0/src1/dst. Add a shader
variant for when src0/src1 are the same dimensions and additional modulus
for src1 aren't needed. Div/mod are slow, so add "fast" div/mod that
have a fast path when the calculation isn't needed or can be done more
cheaply.
* Fixes broken build for the SYCL CUDA backend caused by non-explicit gemm call in outprod (merged in with RWKV6 in
Optimize RWKV6 Operator Naming and Implement Multi-core CPU/ SYCL Acceleration #10133)
* Marks permuted MUL_MAT as unsupported to be able to run test-backend-ops
* Fixes asserts in norm to fix debug builds.
* tests: Fix memory bandwidth calculation for perf tests
Add a flops calculation for flash attention.
Add one GGML_OP_CPY perf test.
* vulkan: Optimize contiguous copies
Add a variant of the copy shader for when the tensors are contiguous. Avoid
the complex addressing calculations, and do four elements per invocation
to hide some other overhead.
Apply similar changes to the scale shader, since scale is always contiguous.
Add a "progress bar" for shader compiles.
Fixes#9582
Spawning too many concurrent copies of glslc leads to "Failed to create pipes"
errors on Linux. This change applies the same throttling we use for
multithreaded pipeline creation.
This change upstreams llamafile's cpu matrix
multiplication kernels for ppc64le using MMA
builtins for FP32 datatype.
This change results in a consistent 90%
improvement in input processing time, and 20%
to 80% improvement in output processing time,
across various batch sizes.
The patch is tested with Meta-Lllama-3-8B,
Mistral-7B, Llama-2-7B-chat-hf models on a
IBM POWER10 machine.
Signed-off-by: Amrita H S <amritahs@linux.vnet.ibm.com>
* metal : opt-in compile flag for BF16
ggml-ci
* ci : use BF16
ggml-ci
* swift : switch back to v12
* metal : has_float -> use_float
ggml-ci
* metal : fix BF16 check in MSL
ggml-ci
* ggml : add ggml_flash_attn_ext_get_prec
* metal : use F16 precision in FA kernels
ggml-ci
* metal : minor clean-up
* metal : compile-guard bf16 FA kernels
ggml-ci
* build : remove obsolete compile flag [no ci]
* metal : prevent int overflows [no ci]
* cuda : disable BF16 FA
ggml-ci
* metal : fix BF16 requirement for FA kernels
ggml-ci
* make : clean-up [no ci]
* rwkv6: rename to wkv6
* rwkv6: support avx2 avx512 armv8 armv9
* rwkv6: update cuda file name
* rwkv6: rename params
* wkv on sycl
* sycl: add some ops
* sycl: Enhance OP support judgment
* wkv6: drop armv9 and tranfer to GGML style
ggml-ci
* sync : ggml
* update the function to use appropriate types
* fix define error
* Update ggml/src/ggml-cpu.c
* add appropriate asserts
* move element-wise functions outside
* put the declaration outside the loop
* rewrite to be more inline with the common pattern for distributing threads
* use recommended way GGML_TENSOR_LOCALS
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
Co-authored-by: Plamen Minev <pacominev@gmail.com>
Co-authored-by: Yuri Khrustalev <ykhrustalev@users.noreply.github.com>
Co-authored-by: Meng, Hengyu <airdldl@163.com>
* ggml : add initial BF16 support
ggml-ci
* metal : add mul_mat_id BF16 support
ggml-ci
* metal : check for bfloat support on the Metal device
ggml-ci
* metal : better var names [no ci]
* metal : do not build bfloat kernels when not supported
ggml-ci
* metal : try to fix BF16 support check
ggml-ci
* metal : this should correctly check bfloat support
* metal : add quantized FA (vec) support
ggml-ci
* metal : add quantized FA (non-vec) support
* metal : fix support check
ggml-ci
* metal : clean-up
* metal : clean-up (cont)
* metal : fix shared memory calc + reduce smem + comments
* metal : float-correctness
* metal : minor [no ci]
* q6_k instruction reordering attempt
* better subtract method
* should be theoretically faster
small improvement with shuffle lut, likely because all loads are already done at that stage
* optimize bit fiddling
* handle -32 offset separately. bsums exists for a reason!
* use shift
* Update ggml-quants.c
* have to update ci macos version to 13 as 12 doesnt work now. 13 is still x86
* llama : fix buffer checks for mamba and rwk
* llama : fix missing worst case flag during reserve
* cuda : fix supports_op for norm
* disable sched SET_CAUSE
* ggml : fix gguf string leak when reading kv pairs fails
* ggml : avoid crashing with GGML_ABORT when the KV has an invalid type
* ggml : avoid crashing on failed memory allocations when loading a gguf file
* ggml: Add POOL2D OP for GPU ACC to the Vulkan.
- The MobileVLM model now supports inference acceleration through GPU by utilizing the Vulkan backend.
- A GGML_OP_POOL_2D shader has been added. (Pooling)
- The encoding performance of the CLIP model improved from 2.8s on the CPU to 0.7s on the GPU.
Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
* [fix] Correct the incorrect order of the parameters.
fix casting to int.
Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
---------
Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
* metal : support permuted matrix multiplicaions
ggml-ci
* cont : use nb01 directly for row steps
ggml-ci
* cont : add comments [no ci]
* metal : minor refactor
* metal : minor
This commit removes the setting of the `used` field of the contexts in
the global state (g_state) in `ggml_init`.
The motivation for this change is that I believe that this additional
initialization might not be required after the changes in Commit
45fc4fed0b9fb5b1af4a8525cbebb95e11208732 ("sync : latest changes from
whisper.cpp"), which changed the initialization of the contexts field
from `{ 0 }` to `{ { 0 } }`:
```console
g_state = (struct ggml_state) {
- /*.contexts =*/ { 0 },
+ /*.contexts =*/ { { 0 } },
};
```
My understanding is that the `{0}` initialization might not have
zero-initialized all the nested fields in every array element because of
compiler differences, and might have been the reason for having the
explicit setting of the `used` fields to false.
* [CANN] Adapt to dynamically loadable backends mechanism
* Fix the Bug: inference running result is garbled in debug running model for LM models who's type is Q4_0 class
* Handle the review comments of this pull request
add intel amx isa detection
add vnni kernel for gemv cases
add vnni and amx kernel support for block_q8_0
code cleanup
fix packing B issue
enable openmp
fine tune amx kernel
switch to aten parallel pattern
add error message for nested parallelism
code cleanup
add f16 support in ggml-amx
add amx kernels for QK_K quant formats: Q4_K, Q5_K, Q6_K and IQ4_XS
update CMakeList
update README
fix some compilation warning
fix compiler warning when amx is not enabled
minor change
ggml-ci
move ggml_amx_init from ggml.c to ggml-amx/mmq.cpp
ggml-ci
update CMakeLists with -mamx-tile, -mamx-int8 and -mamx-bf16
ggml-ci
add amx as an ggml-backend
update header file, the old path for immintrin.h has changed to ggml-cpu-impl.h
minor change
update CMakeLists.txt
minor change
apply weight prepacking in set_tensor method in ggml-backend
fix compile error
ggml-ci
minor change
ggml-ci
update CMakeLists.txt
ggml-ci
add march dependency
minor change
ggml-ci
change ggml_backend_buffer_is_host to return false for amx backend
ggml-ci
fix supports_op
use device reg for AMX backend
ggml-ci
minor change
ggml-ci
minor change
fix rebase
set .buffer_from_host_ptr to be false for AMX backend
* fix: use `vm_allocate` to allocate CPU backend buffer on macOS
* fix: switch to `posix_memalign` to keep existing `free()` usages work
* feat: move `GGML_ALIGNED_MALLOC` to `ggml-backend-impl.h`, add support for `vm_allocate` on macOS
* style: formatting
* fix: move const outside of `#ifndef`
* style: formatting
* fix: unused var
* fix: transform `GGML_ALIGNED_MALLOC` and `GGML_ALIGNED_FREE` into functions and add them to `ggml-impl.h`
* fix: unused var
* fix: page align to `GGUF_DEFAULT_ALIGNMENT`
* fix: page align to `TENSOR_ALIGNMENT`
* fix: convert `TENSOR_ALIGNMENT` to a macro
* fix: increase page size to `32` on iOS
* fix: iOS page size
* fix: `hbw_posix_memalign` alignment
This commit removes the buffer_id field from the leaf_alloc struct.
The motivation for is that this field is only written to and never
read/used as far as I can tell. Each tensor_alloc has a buffer_id field
and this is what caused me to look into this more closely, to
understand what the buffer_id in leaf_alloc was used for.
* Vectorize load instructions in dmmv f16 CUDA kernel
Replaces scalar with vector load instructions, which substantially
improves performance on NVIDIA HBM GPUs, e.g. gives a 1.27X overall
speedup for Meta-Llama-3-8B-Instruct-F16 BS1 inference evaluation on
H100 SXM 80GB HBM3. On GDDR GPUs, there is a slight (1.01X) speedup.
* addressed comment
* Update ggml/src/ggml-cuda/dmmv.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* ggml : do not use BLAS with types without to_float
* ggml : return pointer from ggml_internal_get_type_traits to avoid unnecessary copies
* ggml : rename ggml_internal_get_type_traits -> ggml_get_type_traits
it's not really internal if everybody uses it