* convert : support Mixtral as LLAMA arch
* convert : fix n_ff typo
* llama : model loading
* ggml : sync latest ggml_mul_mat_id
* llama : update graph to support MoE
* llama : fix cur -> cur_expert
* llama : first working version
* llama : fix expert weighting in the FFN
* ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only)
* ggml : add n_as argument to ggml_mul_mat_id
* ggml : fix ggml_get_rows to take into account ne02 / ne11
* metal : add more general support for ggml_get_rows + tests
* llama : add basic support for offloading moe with CUDA
* metal : add/mul/div use general kernel when src1 not cont
* metal : reduce the kernel launches for ggml_mul_mat_id
* ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D
* ggml : update get_rows f16 and q
* cuda : support non-contiguous src1 in get_rows
* llama : offload missing ffn_moe_silu
* metal : fix ggml_get_rows to work with non-cont src1
* metal : add indirect mat-vec kernels for all quantization types
* llama : do not quantize expert gating tensors
* llama : add n_expert and n_expert_used to hparams + change quants
* test-backend-ops : add moe test
* cuda : fix get_rows when ncols is odd
* convert : determine n_ctx correctly
* metal : fix ggml_mul_mat_id for F32
* test-backend-ops : make experts more evenly probable (test_moe)
* test-backend-ops : cleanup, add moe test for batches
* test-backend-ops : add cpy from f32 -> all types test
* test-backend-ops : fix dequantize block offset
* llama : fix hard-coded number of experts
* test-backend-ops : simplify and disable slow tests to avoid CI timeout
* test-backend-ops : disable MOE test with thread sanitizer
* cuda : fix mul_mat_id with multi gpu
* convert : use 1e6 rope_freq_base for mixtral
* convert : fix style
* convert : support safetensors format
* gguf-py : bump version
* metal : add cpy f16 -> f32 kernel
* metal : fix binary ops for ne10 % 4 != 0
* test-backend-ops : add one more sum_rows test
* ggml : do not use BLAS with ggml_mul_mat_id
* convert-hf : support for mixtral-instruct (#4428)
* convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct
* convert : use sentencepiece tokenizer for Mixtral-instruct
* convert : make flake8 happy
* metal : fix soft_max kernels
ref: 1914017863
* metal : limit kernels to not use more than the allowed threads
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Radek Pilar <github@mrkva.eu>
* metal : implement soft_max_ext
* cuda : implement soft_max_ext
* ggml : implement soft_max_ext (CPU)
* batched-bench : print threads
ggml-ci
* metal : simplify soft_max encoding
ggml-ci
* cuda : use 512 threads for soft_max instead of 32
* ggml : update soft max cpu
* cuda : do warp-based block reduce
* cuda : increase max block size to 1024
* cuda : fix warp reduction initialization of shared mem
* metal : warp-based reduction for soft max kernel
* metal : warp-based reduce for rms_norm
* metal : simplify soft max kernel
ggml-ci
* alloc : fix build with debug
* ggml-cuda.cu: Clean up warnings when compiling with clang
* ggml-cuda.cu: Move static items into anonymous namespace
* ggml-cuda.cu: Fix use of namespace start macro
* Revert "ggml-cuda.cu: Fix use of namespace start macro"
This reverts commit 26c11490266c096e3e5731e05270a8f73a5b2874.
* Revert "ggml-cuda.cu: Move static items into anonymous namespace"
This reverts commit e29757e0f7535d1ac314300f0324684cc785e06c.
* Fix#4017
* Update ggml-cuda.cu
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* Update ggml-cuda.cu
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
---------
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
* llama : fix data units
ggml-ci
* Revert "llama : fix data units"
This reverts commit f5feac831fe225ed7f3db938d115732a49dccfc4.
* llama : disambiguate data units
ggml-ci
* Revert "cuda : add ROCM aliases for CUDA pool stuff (#3918)"
This reverts commit 629f917cd6b96ba1274c49a8aab163b1b189229d.
* Revert "cuda : use CUDA memory pool with async memory allocation/deallocation when available (#3903)"
This reverts commit d6069051de7165a4e06662c89257f5d2905bb156.
ggml-ci
* Using cuda memory pools for async alloc/dealloc.
* If cuda device doesnt support memory pool than use old implementation.
* Removed redundant cublasSetStream
---------
Co-authored-by: Oleksii Maryshchenko <omaryshchenko@dtis.com>
* Add '-ngl' support to finetune.cpp
* Add fprintf in ggml_cuda_op_add
When I tried CUDA offloading during finetuning following the readme, I got an assert here.
This probably isn't an important case because inference later gives a warning saying you should use f16 or f32 instead when using lora
* Add 'finetune.sh', which currently fails when using GPU
"error: operator (): Finetuning on tensors with type 'f16' is not yet supported"
* tweak finetune.sh
* Suppress some warnings in ggml.c
* Add f16 implementation to ggml_compute_forward_add_f16_f32
* Add an f16 case to ggml_add_cast_impl and llama_build_lora_finetune_graphs
* finetune.sh: Edit comments
* Add "add_f16_f32_f32_cuda"
* Tweak an error message
* finetune.sh: Add an optional LLAMA_MODEL_DIR variable
* finetune.sh: Add an optional LLAMA_TRAINING_DIR variable
* train : minor
* tabs to spaces
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
* cuda : prints wip
* cuda : new cublas gemm branch for multi-batch quantized src0
* cuda : add F32 sgemm branch
* cuda : fine-tune >= VOLTA params + use MMQ only for small batches
* cuda : remove duplicated cuBLAS GEMM code
* cuda : add CUDA_USE_TENSOR_CORES and GGML_CUDA_FORCE_MMQ macros
* build : add compile option to force use of MMQ kernels
* cmake : add helper for faster CUDA builds
* batched : add NGL arg
* ggml : skip nops in compute_forward
* cuda : minor indentation
* cuda : batched cuBLAS GEMMs for src0 F16 and src1 F32 (attention ops)
* Apply suggestions from code review
These changes plus:
```c++
#define cublasGemmBatchedEx hipblasGemmBatchedEx
```
are needed to compile with ROCM. I haven't done performance testing, but it seems to work.
I couldn't figure out how to propose a change for lines outside what the pull changed, also this is the first time trying to create a multi-part review so please forgive me if I mess something up.
* cuda : add ROCm / hipBLAS cublasGemmBatchedEx define
* cuda : add cublasGemmStridedBatchedEx for non-broadcasted cases
* cuda : reduce mallocs in cublasGemmBatchedEx branch
* cuda : add TODO for calling cublas from kernel + using mem pool
---------
Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
* CUDA: added support for ggml_clamp (see also: https://github.com/ggerganov/ggml/issues/545)
* mpt : added an implementation based (mostly) on falcon integration, modified with deltas from ggml/examples/mpt
* mpt : protect against "clip_qkv": null in mpt-7b
* mpt : quick fix to avoid "Strange model" warning when quantizing MPT models
* mpt : addendum to changeset:84e30e8 - leave parameter clamp_kqv out from metadata rather than use 0.0 to indicate "no clamping" (more compliant with the current GGUF spec?)
* mpt : standardized all tensor names to follow GGUF spec
* mpt : addendum to changeset:1be89c40 - use "req" parameter of GGUF_GET_KEY macro instead of duplicate code
* mpt : fixed comment s/gptneox/mpt/
* mpt : remove tabs, trailing whitespace
* mpt : removed ne01 + n_past == ne00 assertion from alibi (cuda/f32) and rope_shift from build_mpt
* mpt : updated convert-mpt-hf-to-gguf.py to reflect changes made to convert-gptneox-hf-to-gguf.py in pr:3252
* comment out n_past instead of marking it unused
* mpt : removed hardcoded +178 from convert script in favor of utilizing hparams["vocab_size"]
* mpt : remove unused tokenizer_json in convert script
* ggml : remove obsolete n_past assert in ggml_alibi
* llama : print clam_kqv and max_alibi_bias hparams
---------
Co-authored-by: Cebtenzzre <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* ggml-cuda : perform cublas matrix multiplication of quantized types as fp16
* rename CC_TURING to CC_VOLTA
* disable fp16 mat mul completely with multi GPU
* llama.cpp : split llama_context_params into model and context params
ggml-ci
* fix metal build
* fix freq_base/scale default to model value
* llama-bench : keep the same model between tests when possible
* move n_threads to llama_context_params, add n_threads_batch
* fix mpi build
* remove kv_size(), cuda scratch fixes
* remove low-vram option
* add n_threads_batch to system info, refactor to get_system_info()
* add documentation about --threads-batch to the READMEs
* llama-bench fix
* main : fix rope freq/scale warning
* llama.cpp : add llama_get_model
common : add llama_tokenize from model
* remove duplicated ctx/model functions
ggml-ci
* cuda : print total VRAM used