* gritlm: add initial README.md to examples/gritlm
This commit adds a suggestion for an initial README.md for the gritlm
example.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* squash! gritlm: add initial README.md to examples/gritlm
Use the `scripts/hf.sh` script to download the model file.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* squash! gritlm: add initial README.md to examples/gritlm
Fix editorconfig-checker error in examples/gritlm/README.md.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
---------
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* control vector api and implementation
* control-vectors : minor code style updates
* disable control vector when data == nullptr
use -1 for disabled range (also on init) in case we ever support controlling layer 0 (embeddings)
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Information about the Command-R 35B model (128k context) can be found at:
https://huggingface.co/CohereForAI/c4ai-command-r-v01
Based on the llama2 model with a few changes:
1) New hyper parameter to scale output logits (logit_scale)
2) Uses LayerNorm instead of RMSNorm
3) Transfomer layers have a single shared LayerNorm that feeds into both the
self-attention and FFN layers in parallel. There is no post-attention LayerNorm.
4) No support for Rotary Position Embeddings (RoPE) scaling
5) No biases used
Find GGUF files here:
https://huggingface.co/andrewcanis/c4ai-command-r-v01-GGUF
To convert model to GGUF format yourself:
1) Download Command-R Hugging Face safetensors:
git lfs install
git clone https://huggingface.co/CohereForAI/c4ai-command-r-v01
2) Run:
python3 convert-hf-to-gguf.py --outtype f16 ./c4ai-command-r-v01
* gguf : add support for I64 and F64 arrays
GGML currently does not support I64 or F64 arrays and they are not often
used in machine learning, however if in the future the need arises, it
would be nice to add them now, so that the types are next to the other
types I8, I16, I32 in the enums, and it also reserves their type number.
Furthermore, with this addition the GGUF format becomes very usable for
most computational applications of NumPy (being compatible with the most
common NumPy dtypes: i8, i16, i32, i64, f32, f64), providing a faster,
and more versatile alternative to the `npz` format, and a simpler
alternative to the `hdf5` format.
The change in this PR seems small, not significantly increasing the
maintenance burden. I tested this from Python using GGUFWriter/Reader
and `gguf-dump`, as well as from C, everything seems to work.
* Fix compiler warnings
There several places where a gguf context is allocated. A call to gguf_free
is missing in some error paths. Also on linux, llama-bench was missing a
fclose.
* additional methods to read model and ctx parameters
* vocab size as a part of a model metadata
* models without vocabulary, convert.py part
* models without vocabulary, llama.cpp part
* PR clean up
* converter scrypt fixes
* llama_vocab_type update (renamed the new key)
* pr review fixes
* revert function renaming
* one more NoVocab assert
* attempt to reduce the impact of a worst-case scenario
* fragmentation calculation fix
* Update llama.cpp
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Refactor dtype handling to be extensible
This code is equivalent as before, but now it is prepared to easily add
more NumPy dtypes.
* Add support for I8, I16 and I32
These types are allowed in the GGUF specification.
* Add support for I8, I16 and I32 to gguf_writer
* Add support for I8, I16, I32 to gguf_reader
* llama : add pipeline parallelism support for batch processing with multiple CUDA GPUs
ggml-ci
* server : add -ub, --ubatch-size parameter
* fix server embedding test
* llama : fix Mamba inference for pipeline parallelism
Tested to work correctly with both `main` and `parallel` examples.
* llama : limit max batch size to n_batch
* add LLAMA_SCHED_MAX_COPIES to configure the number of input copies for pipeline parallelism
default increase to 4 (from 2)
changing this value may improve performance for some systems, but increases memory usage
* fix hip build
* fix sycl build (disable cpy_tensor_async)
* fix hip build
* llama : limit n_batch and n_ubatch to n_ctx during context creation
* llama : fix norm backend
* batched-bench : sync after decode
* swiftui : sync after decode
* ggml : allow ggml_get_rows to use multiple threads if they are available
* check n_ubatch >= n_tokens with non-casual attention
* llama : do not limit n_batch to n_ctx with non-casual attn
* server : construct batch with size of llama_n_batch
* ggml_backend_cpu_graph_compute : fix return value when alloc fails
* llama : better n_batch and n_ubatch comment
* fix merge
* small fix
* reduce default n_batch to 2048
---------
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* iq1_s: we can do even better
Spent one of the 4 scale bits on a signs of a 0.125 shift.
I.e., quants are now -1 + delta, delta, 1 + delta, where delta
is +/- 0.125.
CUDA works, same performance as before.
PPL(LLaMA-v2-7B) is now 11.85!
* iq1_s: make scalar and AVX2 work with the new version
* iq1_s: make Neon work with new version.
~10% drop in performance, so will need some more work.
* iq1_s: make Metal work with new version
* iq1_s: very slightly faster dequantize on Metal
* iq1_s: fix dequantize on the CPU
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>