Commit Graph

3091 Commits

Author SHA1 Message Date
Theia Vogel
877b4d0c62
llama : add support for control vectors (#5970)
* control vector api and implementation

* control-vectors : minor code style updates

* disable control vector when data == nullptr

use -1 for disabled range (also on init) in case we ever support controlling layer 0 (embeddings)

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-15 22:43:02 +02:00
Andrew Canis
12247f4c69
llama : add Command-R support (#6033)
Information about the Command-R 35B model (128k context) can be found at:
	https://huggingface.co/CohereForAI/c4ai-command-r-v01

Based on the llama2 model with a few changes:

1) New hyper parameter to scale output logits (logit_scale)
2) Uses LayerNorm instead of RMSNorm
3) Transfomer layers have a single shared LayerNorm that feeds into both the
   self-attention and FFN layers in parallel. There is no post-attention LayerNorm.
4) No support for Rotary Position Embeddings (RoPE) scaling
5) No biases used

Find GGUF files here:
	https://huggingface.co/andrewcanis/c4ai-command-r-v01-GGUF

To convert model to GGUF format yourself:

1) Download Command-R Hugging Face safetensors:
	git lfs install
	git clone https://huggingface.co/CohereForAI/c4ai-command-r-v01

2) Run:
	python3 convert-hf-to-gguf.py --outtype f16 ./c4ai-command-r-v01
2024-03-15 22:41:22 +02:00
Ting Lou
4e9a7f7f7f
llava : change API to pure C style for Rust FFI bindgen (#6079)
Co-authored-by: Lou Ting <louting.t@alibaba-inc.com>
2024-03-15 16:31:05 +02:00
slaren
3020327f6c
cuda : disable unused cudaLaunchHostFunc code (#6078) 2024-03-15 14:24:03 +02:00
Neo Zhang Jianyu
46acb36767
fix set main gpu error (#6073) 2024-03-15 18:53:53 +08:00
Georgi Gerganov
131b058409
make : ggml-metal.o depends on ggml.h 2024-03-15 11:38:40 +02:00
AidanBeltonS
753e36f650
[SYCL] Fix non-intel device selection (#6042)
* Fix non-intel device selection

* Update ggml-sycl.cpp

Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>

* Update ggml-sycl.cpp

Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>

---------

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>
2024-03-15 14:56:20 +05:30
Ondřej Čertík
7ce2c77f88
gguf : add support for I64 and F64 arrays (#6062)
* gguf : add support for I64 and F64 arrays

GGML currently does not support I64 or F64 arrays and they are not often
used in machine learning, however if in the future the need arises, it
would be nice to add them now, so that the types are next to the other
types I8, I16, I32 in the enums, and it also reserves their type number.

Furthermore, with this addition the GGUF format becomes very usable for
most computational applications of NumPy (being compatible with the most
common NumPy dtypes: i8, i16, i32, i64, f32, f64), providing a faster,
and more versatile alternative to the `npz` format, and a simpler
alternative to the `hdf5` format.

The change in this PR seems small, not significantly increasing the
maintenance burden. I tested this from Python using GGUFWriter/Reader
and `gguf-dump`, as well as from C, everything seems to work.

* Fix compiler warnings
2024-03-15 10:46:51 +02:00
Xuan Son Nguyen
aab606a11f
llama : add Orion chat template (#6066) 2024-03-15 10:44:57 +02:00
slaren
b0bc9f4a9d
llama-bench : use random tokens to improve accuracy with mixtral (#6069) 2024-03-15 10:22:24 +02:00
Georgi Gerganov
4755afd1cb
llama : fix integer overflow during quantization (#6063) 2024-03-14 22:58:41 +02:00
Steve Grubb
6e0438da3c
gguf : fix resource leaks (#6061)
There several places where a gguf context is allocated. A call to gguf_free
is missing in some error paths. Also on linux, llama-bench was missing a
fclose.
2024-03-14 20:29:32 +02:00
Ondřej Čertík
727107707a
gguf-py : bump version to 0.8.0 (#6060) 2024-03-14 19:57:31 +02:00
Michael Podvitskiy
69ff61397d
llama : support models without vocabulary (#5798)
* additional methods to read model and ctx parameters

* vocab size as a part of a model metadata

* models without vocabulary, convert.py part

* models without vocabulary, llama.cpp part

* PR clean up

* converter scrypt fixes

* llama_vocab_type update (renamed the new key)

* pr review fixes

* revert function renaming

* one more NoVocab assert
2024-03-14 18:21:56 +02:00
Georgi Gerganov
044ec4b2a5
embedding : add EOS token if not present (#899) 2024-03-14 15:14:14 +02:00
Georgi Gerganov
77178eedc8
gguf-py : fix dtype check (#6045) 2024-03-14 13:32:14 +02:00
Jian Liao
15a333260a
readme : improve readme for Llava-1.6 example (#6044)
Co-authored-by: Jian Liao <jianliao@adobe.com>
2024-03-14 13:18:23 +02:00
Pierrick Hymbert
43241adf22
server: disable debug release type sanitizer, simplify trigger (#6047)
- increase time out for server
 - do not fail fast
2024-03-14 13:15:39 +02:00
Georgi Gerganov
a44bc969e4
llama : fix typo 2024-03-14 13:13:06 +02:00
Michael Podvitskiy
2c4fb69246
llama : optimize defrag moves + fix fragmentation calculation (#6037)
* attempt to reduce the impact of a worst-case scenario

* fragmentation calculation fix

* Update llama.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-14 12:56:48 +02:00
Ondřej Čertík
3ca23481dd
gguf-py : add support for I8, I16 and I32 (#6045)
* Refactor dtype handling to be extensible

This code is equivalent as before, but now it is prepared to easily add
more NumPy dtypes.

* Add support for I8, I16 and I32

These types are allowed in the GGUF specification.

* Add support for I8, I16 and I32 to gguf_writer

* Add support for I8, I16, I32 to gguf_reader
2024-03-14 12:40:14 +02:00
Georgi Gerganov
3fe8d7a17f
ggml : designate enum vals for integer types (#6050) 2024-03-14 12:38:37 +02:00
Georgi Gerganov
68265ebfc6
embedding : print all resulting embeddings (#899) 2024-03-14 12:37:20 +02:00
Georgi Gerganov
381da2d9f0
metal : build metallib + fix embed path (#6015)
* metal : build metallib + fix embed path

ggml-ci

* metal : fix embed build + update library load logic

ggml-ci

* metal : fix embeded library build

ggml-ci

* ci : fix iOS builds to use embedded library
2024-03-14 11:55:23 +02:00
Georgi Gerganov
0fd6c1f015
embedding : print cosine similarity (#899) 2024-03-14 10:12:29 +02:00
Linwei Wang
19885d205e
readme : update details about running llama in Termux on Android (#6039) 2024-03-13 20:34:40 +02:00
Georgi Gerganov
76a936c893
readme : update API changes and hot topics 2024-03-13 20:33:56 +02:00
Clint Herron
463628372d
grammar : handle missing "root" node (#6004) 2024-03-13 20:10:40 +02:00
slaren
f30ea47a87
llama : add pipeline parallelism support (#6017)
* llama : add pipeline parallelism support for batch processing with multiple CUDA GPUs

ggml-ci

* server : add -ub, --ubatch-size parameter

* fix server embedding test

* llama : fix Mamba inference for pipeline parallelism

Tested to work correctly with both `main` and `parallel` examples.

* llama : limit max batch size to n_batch

* add LLAMA_SCHED_MAX_COPIES to configure the number of input copies for pipeline parallelism
default increase to 4 (from 2)

changing this value may improve performance for some systems, but increases memory usage

* fix hip build

* fix sycl build (disable cpy_tensor_async)

* fix hip build

* llama : limit n_batch and n_ubatch to n_ctx during context creation

* llama : fix norm backend

* batched-bench : sync after decode

* swiftui : sync after decode

* ggml : allow ggml_get_rows to use multiple threads if they are available

* check n_ubatch >= n_tokens with non-casual attention

* llama : do not limit n_batch to n_ctx with non-casual attn

* server : construct batch with size of llama_n_batch

* ggml_backend_cpu_graph_compute : fix return value when alloc fails

* llama : better n_batch and n_ubatch comment

* fix merge

* small fix

* reduce default n_batch to 2048

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-13 18:54:21 +01:00
slaren
d8fd0ccf6a
test-backend-ops : skip CPU backend by default (#6028) 2024-03-13 15:58:30 +02:00
AidanBeltonS
b3d978600f
Update get version (#6025) 2024-03-13 18:47:54 +05:30
Xuan Son Nguyen
99b71c068f
Server: Use multi-task for embeddings endpoint (#6001)
* use multitask for embd endpoint

* specify types

* remove redundant {"n_predict", 0}
2024-03-13 11:39:11 +01:00
slaren
306d34be7a
ci : remove tidy-review (#6021) 2024-03-12 17:55:19 +02:00
Georgi Gerganov
8030da7afe
ggml : reuse quantum structs across backends (#5943)
* ggml : reuse quant blocks across backends

ggml-ci

* ggml : define helper constants only for CUDA and SYCL

ggml-ci

* ggml : define helper quantum constants for SYCL

ggml-ci
2024-03-12 14:27:20 +02:00
Georgi Gerganov
184215e783
ggml : fix UB in IQ2_S and IQ3_S (#6012) 2024-03-12 13:49:55 +02:00
Georgi Gerganov
48358b2e5b
sycl : update IQ1_S kernels (WIP - not working!) (#5995)
* sycl : try to fix after IQ1_S changes

* sycl : iq1s_grid -> iq1s_grid_gpu

* sycl : fix grid type
2024-03-12 11:15:05 +02:00
gliptic
5cdb371731
grammar : fix unnecessarily retained pointer to rules (#6003) 2024-03-11 21:59:03 +02:00
Kawrakow
44ca159faf
1.5 bit: we can do even better (#5999)
* iq1_s: we can do even better

Spent one of the 4 scale bits on a signs of a 0.125 shift.
I.e., quants are now -1 + delta, delta, 1 + delta, where delta
is +/- 0.125.

CUDA works, same performance as before.
PPL(LLaMA-v2-7B) is now 11.85!

* iq1_s: make scalar and AVX2 work with the new version

* iq1_s: make Neon work with new version.

~10% drop in performance, so will need some more work.

* iq1_s: make Metal work with new version

* iq1_s: very slightly faster dequantize on Metal

* iq1_s: fix dequantize on the CPU

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-11 17:53:15 +02:00
Georgi Gerganov
05b06210c9
llama : more consistent names of count variables (#5994)
* llama : more consistent names of count variables

ggml-ci

* llama : n_parallel -> n_seq_max

* common : fix param name

* examples : fix param name
2024-03-11 17:49:47 +02:00
Georgi Gerganov
83796e62bc
llama : refactor unicode stuff (#5992)
* llama : refactor unicode stuff

ggml-ci

* unicode : names

* make : fix c++ compiler

* unicode : names

* unicode : straighten tables

* zig : fix build

* unicode : put nfd normalization behind API

ggml-ci

* swift : fix build

* unicode : add BOM

* unicode : add <cstdint>

ggml-ci

* unicode : pass as cpts as const ref
2024-03-11 17:47:47 +02:00
Jakub N
828defefb6
Update server docker image URLs (#5997) 2024-03-11 14:40:42 +01:00
Xuan Son Nguyen
caa106d4e0
Server: format error to json (#5961)
* server: format error to json

* server: do not crash on grammar error

* fix api key test case

* revert limit max n_predict

* small fix

* correct coding style

* update completion.js

* launch_slot_with_task

* update docs

* update_slots

* update webui

* update readme
2024-03-11 10:56:41 +01:00
Michael Podvitskiy
3202361c5b
ggml, ci : Windows ARM runner and build fixes (#5979)
* windows arm ci

* fix `error C2078: too many initializers` with ggml_vld1q_u32 macro for MSVC ARM64

* fix `warning C4146: unary minus operator applied to unsigned type, result still unsigned`

* fix `error C2065: '__fp16': undeclared identifier`
2024-03-11 11:28:51 +02:00
Minsoo Cheong
332bdfd798
server : maintain chat completion id for streaming responses (#5988)
* server: maintain chat completion id for streaming responses

* Update examples/server/utils.hpp

* Update examples/server/utils.hpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-11 10:09:32 +02:00
Gilad S
ecab1c75de
cmake : fix subdir for LLAMA_METAL_EMBED_LIBRARY (#5985) 2024-03-11 10:00:08 +02:00
Georgi Gerganov
ee35600b90
llama : fix F16/F32 downcast + improve names (#5980) 2024-03-11 09:56:47 +02:00
Kawrakow
be858f6205
Better 1.5 bit quantization (#5971)
* Trying blocvks of 16 for IQ1_S - seems slightly better

* iq1s_blocks16: Adjust scale fudge factor to 1.125

* iq1s_blocks16: going to blocks of 32

with 2048 lattice points, so same bpw.
This is even better than blocks of 16.
Should I try blocks of 64? But to keep the same
bpw, when I go to 4096 lattice points, I need to
remove blocks alltogether and just have superblocks of
256 weights.

* iq1s_blocks16: Use 2*<x^2> as sigma2 in weight adjustment

* iq1s_blocks16: scalar and AVX2 dot products

* iq1s_blocks16: CUDA dot product

* iq1s_blocks16: Metal works, Neon does not

Metal works but TG is dog slow (35 t/s). PP is OKish (493 t/s).
Not seeing the bug in the Neon implementation for now.

* iq1s_blocks16: fixed Neon

* iq1s_blocks16: very slightly faster TG on Metal

Still pathetic at 37 t/s

* iq1s_blocks16: speedup Metal by packing codebook into uint32_t's

* Formatting

* iq1s_blocks16: uint32_t codebook is also better in CUDA

TG-128 is now 204 t/s up from 194 t/s.
PP-512 is 5890 t/s, so significantly better than other quants

* iq1s_blocks16: slightly faster Neon dot product

* iq1s_blocks16: faster AVX2 dot product

* iq1s_blocks16: adjust to ggml-common.h

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-11 07:51:49 +01:00
Abhilash Majumder
ef3ced26a3
[SYCL] Add q3_s and q1_s (#5886)
* Add q3_s and q1_s

* fix compilation

* fix build

* fix build

* fix build

* enable ops

* rm macro

* increase grid space
2024-03-11 10:27:56 +05:30
AidanBeltonS
3814a07392
[SYCL] Add support for SYCL Nvidia target (#5738)
* Add support for nvidia target in CMake

* Update sycl read-me for Nvidia target

* Fix errors
2024-03-11 09:13:57 +08:00
Georgi Gerganov
bb6d00bbf9
metal : move mm_id indices to shared mem (#5982) 2024-03-10 23:12:48 +02:00