19 Commits

Author SHA1 Message Date
Georgi Gerganov
38566680cd
ggml : add IQ2 to test-backend-ops + refactoring (#4990)
* ggml : add IQ2 to test-backend-ops + refactoring

ggml-ci

* cuda : update supports_op for IQ2

ggml-ci

* ci : enable LLAMA_CUBLAS=1 for CUDA nodes

ggml-ci

* cuda : fix out-of-bounds-access in `mul_mat_vec_q`

ggml-ci

* tests : avoid creating RNGs for each Q tensor

ggml-ci

* tests : avoid creating RNGs for each tensor

ggml-ci
2024-01-17 18:54:56 +02:00
Kawrakow
334a835a1c
ggml : importance matrix support for legacy quants (#4969)
* imatrix: adding support for legacy quants

* imatrix: guard Q4_0/Q5_0 against ffn_down craziness

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-16 19:51:26 +02:00
Kawrakow
467a882fd2
Add ability to use importance matrix for all k-quants (#4930)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-14 16:21:12 +02:00
Kawrakow
147b17ac94
2-bit quantizations (#4897)
* imatrix: load

* imatrix: WIP

* imatrix: Add Q2_K quantization

* imatrix: also guard against Q2_K_S quantization without importance matrix

* imatrix: guard even more against low-bit quantization misuse

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-14 09:45:56 +02:00
Georgi Gerganov
f238461236
ggml : fix 32-bit ARM compat for IQ2_XS (whisper/1758)
* ggml : fix 32-bit ARM compat

* ggml : fix fix

* ggml : fix fix fix
2024-01-12 22:02:11 +02:00
Kawrakow
49662cbed3
ggml : SOTA 2-bit quants (add IQ2_XS) (#4856)
* iq2_xs: basics

* iq2_xs: this should have been in the basics

* iq2_xs: CUDA and scalar CPU works

* iq2_xs: WIP Metal

* iq2_xs: Metal now works

* iq2_xs: working, but dog slow, ARM_NEON dot product

* iq2_xs: better ARM_NEON dot product

We are now at 19.5 t/s for TG-128 and 61 t/s for PP-512 when
running on the CPU.

* iq2_xs: AVX2 dot product - 19.5 t/s

* iq2_xs: faster AVX2 dit product

21.4 t/s for TG-128, 59.2 t/s for PP-512.
The latter is 2x compared to the previous version.

* iq2_xs: had forgotten to delete iq2-data.h

* Add llama enum for IQ2_XS

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-11 21:39:39 +02:00
Georgi Gerganov
18c2e1752c
ggml : fix vld1q_s8_x4 32-bit compat (#4828)
* ggml : fix vld1q_s8_x4 32-bit compat

ggml-ci

* ggml : fix 32-bit ARM compat (cont)

ggml-ci
2024-01-09 10:42:06 +02:00
Kawrakow
dd5ae06405
SOTA 2-bit quants (#4773)
* iq2_xxs: basics

* iq2_xxs: scalar and AVX2 dot products

Needed to change Q8_K to have quants in the -127...127 range,
else the IQ2_XXS AVX implementation becomes very awkward.
The alternative would have been to use Q8_0 instead. Perhaps
I'll change later, for now this is what we have.

* iq2_xxs: ARM_NEON dot product

Somehow strangely slow (112 ms/token).

* iq2_xxs: WIP Metal

Dequantize works, something is still wrong with the
dot product.

* iq2_xxs: Metal dot product now works

We have
PP-512 = 475 t/s
TG-128 = 47.3 t/s

Not the greatest performance, but not complete garbage either.

* iq2_xxs: slighty faster dot product

TG-128 is now 48.4 t/s

* iq2_xxs: slighty faster dot product

TG-128 is now 50.9 t/s

* iq2_xxs: even faster Metal dot product

TG-128 is now 54.1 t/s.

Strangely enough, putting the signs lookup table
into shared memory has a bigger impact than the
grid values being in shared memory.

* iq2_xxs: dequantize CUDA kernel - fix conflict with master

* iq2_xxs: quantized CUDA dot product (MMVQ)

We get TG-128 = 153.1 t/s

* iq2_xxs: slightly faster CUDA dot product

TG-128 is now at 155.1 t/s.

* iq2_xxs: add to llama ftype enum

* iq2_xxs: fix MoE on Metal

* Fix missing MMQ ops when on hipBLAS

I had put the ggml_supports_mmq call at the wrong place.

* Fix bug in qequantize_row_iq2_xxs

The 0.25f factor was missing.
Great detective work by @ggerganov!

* Fixing tests

* PR suggestion

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 16:02:32 +01:00
Georgi Gerganov
e39106c055
ggml : add ggml_vdotq_s32 alias (#4715)
ggml-ci
2023-12-31 11:43:31 +02:00
Georgi Gerganov
951010fa53
ggml : fix dot product for ARM (#4630)
ggml-ci
2023-12-27 11:02:13 +02:00
FantasyGmm
a55876955b
cuda : fix jetson compile error (#4560)
* fix old jetson compile error

* Update Makefile

* update jetson detect and cuda version detect

* update cuda marco define

* update makefile and cuda,fix some issue

* Update README.md

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update Makefile

* Update README.md

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-22 17:11:12 +02:00
Richard Kiss
9494d7c477
english : use typos to fix comments and logs (#4354) 2023-12-12 11:53:36 +02:00
Roger Meier
8e9361089d
build : support ppc64le build for make and CMake (#3963)
* build: support ppc64le build for make and CMake

* build: keep __POWER9_VECTOR__ ifdef and extend with __powerpc64__

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-11-17 18:11:23 +02:00
Michael Potter
6bb4908a17
Fix MacOS Sonoma model quantization (#4052)
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-11-14 12:34:41 -05:00
Georgi Gerganov
3d68f364f1
ggml : sync (im2col, GPU conv, 32-bit arm compat) (#4060)
ggml-ci
2023-11-13 16:55:52 +02:00
Georgi Gerganov
9a3b4f6c86
ggml : fix UNUSED macro (#3762) 2023-11-01 13:50:45 +02:00
Andrew Godfrey
73bdcb395e
finetune : add -ngl parameter (#3762)
* Add '-ngl' support to finetune.cpp

* Add fprintf in ggml_cuda_op_add

When I tried CUDA offloading during finetuning following the readme, I got an assert here.
This probably isn't an important case because inference later gives a warning saying you should use f16 or f32 instead when using lora

* Add 'finetune.sh', which currently fails when using GPU

"error: operator (): Finetuning on tensors with type 'f16' is not yet supported"

* tweak finetune.sh

* Suppress some warnings in ggml.c

* Add f16 implementation to ggml_compute_forward_add_f16_f32

* Add an f16 case to ggml_add_cast_impl and llama_build_lora_finetune_graphs

* finetune.sh: Edit comments

* Add "add_f16_f32_f32_cuda"

* Tweak an error message

* finetune.sh: Add an optional LLAMA_MODEL_DIR variable

* finetune.sh: Add an optional LLAMA_TRAINING_DIR variable

* train : minor

* tabs to spaces

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
2023-11-01 13:49:04 +02:00
Georgi Gerganov
207b51900e
ggml : move FP16 <-> FP32 code to ggml-impl.h (#3861)
* ggml : move FP16 <-> FP32 stuff to ggml-impl.h

ggml-ci

* tests : fix ARM build

* ggml : explicitly initialize deprecated type traits

* ggml : add math.h to ggml-impl.h

* ggml : remove duplicate static assert macros

* ggml : prefix lookup tables with ggml_

ggml-ci

* ggml-impl : move extern "C" to start of file
2023-10-30 19:19:15 +02:00
Georgi Gerganov
d69d777c02
ggml : quantization refactoring (#3833)
* ggml : factor all quantization code in ggml-quants

ggml-ci

* ggml-quants : fix Zig and Swift builds + quantize tool

ggml-ci

* quantize : --pure option for disabling k-quant mixtures

---------

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
2023-10-29 18:32:28 +02:00