Pierrick Hymbert 930b178026
server: logs - unified format and --log-format option (#5700)
* server: logs - always use JSON logger, add add thread_id in message, log task_id and slot_id

* server : skip GH copilot requests from logging

* server : change message format of server_log()

* server : no need to repeat log in comment

* server : log style consistency

* server : fix compile warning

* server : fix tests regex patterns on M2 Ultra

* server: logs: PR feedback on log level

* server: logs: allow to choose log format in json or plain text

* server: tests: output server logs in text

* server: logs switch init logs to server logs macro

* server: logs ensure value json value does not raised error

* server: logs reduce level VERBOSE to VERB to max 4 chars

* server: logs lower case as other log messages

* server: logs avoid static in general

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* server: logs PR feedback: change text log format to: LEVEL [function_name] message | additional=data

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-25 13:50:32 +01:00

48 lines
2.2 KiB
Markdown

# Server tests
Python based server tests scenario using [BDD](https://en.wikipedia.org/wiki/Behavior-driven_development) and [behave](https://behave.readthedocs.io/en/latest/):
* [issues.feature](./features/issues.feature) Pending issues scenario
* [parallel.feature](./features/parallel.feature) Scenario involving multi slots and concurrent requests
* [security.feature](./features/security.feature) Security, CORS and API Key
* [server.feature](./features/server.feature) Server base scenario: completion, embedding, tokenization, etc...
Tests target GitHub workflows job runners with 4 vCPU.
Requests are using [aiohttp](https://docs.aiohttp.org/en/stable/client_reference.html), [asyncio](https://docs.python.org/fr/3/library/asyncio.html) based http client.
Note: If the host architecture inference speed is faster than GitHub runners one, parallel scenario may randomly fail. To mitigate it, you can increase values in `n_predict`, `kv_size`.
### Install dependencies
`pip install -r requirements.txt`
### Run tests
1. Build the server
```shell
cd ../../..
mkdir build
cd build
cmake ../
cmake --build . --target server
```
2. download required models:
1. `../../../scripts/hf.sh --repo ggml-org/models --file tinyllamas/stories260K.gguf`
3. Start the test: `./tests.sh`
It's possible to override some scenario steps values with environment variables:
- `PORT` -> `context.server_port` to set the listening port of the server during scenario, default: `8080`
- `LLAMA_SERVER_BIN_PATH` -> to change the server binary path, default: `../../../build/bin/server`
- `DEBUG` -> "ON" to enable steps and server verbose mode `--verbose`
- `SERVER_LOG_FORMAT_JSON` -> if set switch server logs to json format
### Run @bug, @wip or @wrong_usage annotated scenario
Feature or Scenario must be annotated with `@llama.cpp` to be included in the default scope.
- `@bug` annotation aims to link a scenario with a GitHub issue.
- `@wrong_usage` are meant to show user issue that are actually an expected behavior
- `@wip` to focus on a scenario working in progress
To run a scenario annotated with `@bug`, start:
`DEBUG=ON ./tests.sh --no-skipped --tags bug`
After changing logic in `steps.py`, ensure that `@bug` and `@wrong_usage` scenario are updated.