Olivier Chafik 95385241a9
examples : restore the functionality to import llama2.c models (#2685)
* Fix import of llama2.c models that don't share weights between embedding layers

* llama2c: reinstate ggmlv3 conversion output + update readme w/ gguf conv

* llama2.c: comment out legacy "load from ggml model" logic

* llama2.c: convert special-cased "<0xXX>" single byte tokens from tokenizer.bin
2023-08-23 22:33:05 +03:00

1.5 KiB

Convert llama2.c model to ggml

This example reads weights from project llama2.c and saves them in ggml compatible format. The vocab that is available in models/ggml-vocab.bin is used by default.

To convert the model first download the models from the llma2.c repository:

$ make -j

After successful compilation, following usage options are available:

usage: ./convert-llama2c-to-ggml [options]

options:
  -h, --help                       show this help message and exit
  --copy-vocab-from-model FNAME    model path from which to copy vocab (default 'tokenizer.bin')
  --llama2c-model FNAME            [REQUIRED] model path from which to load Karpathy's llama2.c model
  --llama2c-output-model FNAME     model path to save the converted llama2.c model (default ak_llama_model.bin')

An example command using a model from karpathy/tinyllamas is as follows:

$ ./convert-llama2c-to-ggml --copy-vocab-from-model ../llama2.c/tokenizer.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.ggmlv3.bin

For now the generated model is in the legacy GGJTv3 format, so you need to convert it to gguf manually:

$ python ./convert-llama-ggmlv3-to-gguf.py --eps 1e-5 --input stories42M.ggmlv3.bin --output stories42M.gguf.bin

Now you can use the model with a command like:

$ ./main -m stories42M.gguf.bin -p "One day, Lily met a Shoggoth" -n 500 -c 256