text-generation-webui/modules/llamacpp_model.py

90 lines
2.9 KiB
Python
Raw Normal View History

'''
Based on
https://github.com/abetlen/llama-cpp-python
2023-04-01 02:18:05 +02:00
Documentation:
https://abetlen.github.io/llama-cpp-python/
'''
import re
from llama_cpp import Llama, LlamaCache
2023-03-19 07:42:10 +01:00
2023-04-01 02:18:05 +02:00
from modules import shared
2023-03-31 19:27:01 +02:00
from modules.callbacks import Iteratorize
from modules.logging_colors import logger
2023-03-31 19:27:01 +02:00
2023-03-19 07:42:10 +01:00
class LlamaCppModel:
def __init__(self):
self.initialized = False
def __del__(self):
self.model.__del__()
2023-03-19 07:42:10 +01:00
@classmethod
def from_pretrained(self, path):
result = self()
cache_capacity = 0
if shared.args.cache_capacity is not None:
if 'GiB' in shared.args.cache_capacity:
cache_capacity = int(re.sub('[a-zA-Z]', '', shared.args.cache_capacity)) * 1000 * 1000 * 1000
elif 'MiB' in shared.args.cache_capacity:
cache_capacity = int(re.sub('[a-zA-Z]', '', shared.args.cache_capacity)) * 1000 * 1000
else:
cache_capacity = int(shared.args.cache_capacity)
logger.info("Cache capacity is " + str(cache_capacity) + " bytes")
params = {
'model_path': str(path),
'n_ctx': shared.args.n_ctx,
'seed': int(shared.args.llama_cpp_seed),
'n_threads': shared.args.threads or None,
'n_batch': shared.args.n_batch,
'use_mmap': not shared.args.no_mmap,
'use_mlock': shared.args.mlock,
'n_gpu_layers': shared.args.n_gpu_layers
}
self.model = Llama(**params)
if cache_capacity > 0:
self.model.set_cache(LlamaCache(capacity_bytes=cache_capacity))
# This is ugly, but the model and the tokenizer are the same object in this library.
return result, result
def encode(self, string):
if type(string) is str:
string = string.encode()
return self.model.tokenize(string)
2023-03-19 07:42:10 +01:00
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=1, mirostat_mode=0, mirostat_tau=5, mirostat_eta=0.1, callback=None):
context = context if type(context) is str else context.decode()
completion_chunks = self.model.create_completion(
prompt=context,
max_tokens=token_count,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repeat_penalty=repetition_penalty,
mirostat_mode=int(mirostat_mode),
mirostat_tau=mirostat_tau,
mirostat_eta=mirostat_eta,
stream=True
)
output = ""
for completion_chunk in completion_chunks:
text = completion_chunk['choices'][0]['text']
output += text
if callback:
callback(text)
return output
2023-03-19 07:42:10 +01:00
def generate_with_streaming(self, **kwargs):
with Iteratorize(self.generate, kwargs, callback=None) as generator:
2023-03-31 19:27:01 +02:00
reply = ''
2023-03-19 07:42:10 +01:00
for token in generator:
reply += token
yield reply