text-generation-webui/modules/llamacpp_model.py

200 lines
6.7 KiB
Python
Raw Normal View History

import re
from functools import partial
2023-09-17 15:42:32 +02:00
import numpy as np
import torch
2023-03-19 07:42:10 +01:00
from modules import shared
2023-03-31 19:27:01 +02:00
from modules.callbacks import Iteratorize
from modules.llama_cpp_python_hijack import llama_cpp_lib
from modules.logging_colors import logger
from modules.text_generation import get_max_prompt_length
2023-03-31 19:27:01 +02:00
llamacpp_quant_mapping = {
'f32': 0,
'fp16': 1,
'q4_0': 2,
'q4_1': 3,
'q5_0': 6,
'q5_1': 7,
'q8_0': 8,
'q8_1': 9,
'q2_k': 10,
'q3_k': 11,
'q4_k': 12,
'q5_k': 13,
'q6_k': 14,
'q8_k': 15,
'iq4_nl': 20,
'bf16': 30,
}
llamacpp_valid_cache_types = {'fp16', 'q8_0', 'q4_0'}
def get_llamacpp_cache_type_for_string(quant_type: str):
quant_type = quant_type.lower()
if quant_type in llamacpp_valid_cache_types:
return llamacpp_quant_mapping[quant_type]
else:
raise ValueError(f"Invalid cache type for llama.cpp: {quant_type}. Valid options are: fp16, q8_0, q4_0.")
2023-03-19 07:42:10 +01:00
def ban_eos_logits_processor(eos_token, input_ids, logits):
logits[eos_token] = -float('inf')
return logits
2023-09-15 23:27:27 +02:00
def custom_token_ban_logits_processor(token_ids, input_ids, logits):
for token_id in token_ids:
logits[token_id] = -float('inf')
return logits
2023-03-19 07:42:10 +01:00
class LlamaCppModel:
def __init__(self):
self.initialized = False
2023-09-24 23:05:24 +02:00
self.grammar_string = ''
self.grammar = None
2023-03-19 07:42:10 +01:00
def __del__(self):
2023-11-30 00:19:48 +01:00
del self.model
2023-03-19 07:42:10 +01:00
@classmethod
def from_pretrained(self, path):
Llama = llama_cpp_lib().Llama
LlamaCache = llama_cpp_lib().LlamaCache
2023-03-19 07:42:10 +01:00
result = self()
cache_capacity = 0
if shared.args.cache_capacity is not None:
if 'GiB' in shared.args.cache_capacity:
cache_capacity = int(re.sub('[a-zA-Z]', '', shared.args.cache_capacity)) * 1000 * 1000 * 1000
elif 'MiB' in shared.args.cache_capacity:
cache_capacity = int(re.sub('[a-zA-Z]', '', shared.args.cache_capacity)) * 1000 * 1000
else:
cache_capacity = int(shared.args.cache_capacity)
2023-11-25 15:33:37 +01:00
if cache_capacity > 0:
logger.info("Cache capacity is " + str(cache_capacity) + " bytes")
if shared.args.tensor_split is None or shared.args.tensor_split.strip() == '':
tensor_split_list = None
else:
tensor_split_list = [float(x) for x in shared.args.tensor_split.strip().split(",")]
params = {
'model_path': str(path),
'n_ctx': shared.args.n_ctx,
'n_threads': shared.args.threads or None,
2023-10-02 06:27:04 +02:00
'n_threads_batch': shared.args.threads_batch or None,
'n_batch': shared.args.n_batch,
'use_mmap': not shared.args.no_mmap,
'use_mlock': shared.args.mlock,
'mul_mat_q': not shared.args.no_mul_mat_q,
'numa': shared.args.numa,
'n_gpu_layers': shared.args.n_gpu_layers,
'rope_freq_base': shared.args.rope_freq_base,
'tensor_split': tensor_split_list,
'rope_freq_scale': 1.0 / shared.args.compress_pos_emb,
'offload_kqv': not shared.args.no_offload_kqv,
'split_mode': 1 if not shared.args.row_split else 2,
'flash_attn': shared.args.flash_attn
}
2023-08-27 07:11:07 +02:00
if shared.args.cache_type:
params["type_k"] = get_llamacpp_cache_type_for_string(shared.args.cache_type)
params["type_v"] = get_llamacpp_cache_type_for_string(shared.args.cache_type)
result.model = Llama(**params)
if cache_capacity > 0:
result.model.set_cache(LlamaCache(capacity_bytes=cache_capacity))
# This is ugly, but the model and the tokenizer are the same object in this library.
return result, result
def encode(self, string):
if type(string) is str:
string = string.encode()
2023-06-06 18:06:05 +02:00
return self.model.tokenize(string)
2023-03-19 07:42:10 +01:00
def decode(self, ids, **kwargs):
2023-09-17 16:01:34 +02:00
return self.model.detokenize(ids).decode('utf-8')
2023-09-17 15:42:32 +02:00
def get_logits(self, tokens):
self.model.reset()
2023-09-17 15:42:32 +02:00
self.model.eval(tokens)
logits = self.model._scores
logits = np.expand_dims(logits, 0) # batch dim is expected
return torch.tensor(logits, dtype=torch.float32)
2023-09-24 23:05:24 +02:00
def load_grammar(self, string):
if string != self.grammar_string:
self.grammar_string = string
if string.strip() != '':
self.grammar = llama_cpp_lib().LlamaGrammar.from_string(string)
else:
self.grammar = None
2023-06-17 01:35:38 +02:00
def generate(self, prompt, state, callback=None):
LogitsProcessorList = llama_cpp_lib().LogitsProcessorList
2023-06-17 01:35:38 +02:00
prompt = prompt if type(prompt) is str else prompt.decode()
# Handle truncation
prompt = self.encode(prompt)
prompt = prompt[-get_max_prompt_length(state):]
2023-09-17 22:07:48 +02:00
prompt = self.decode(prompt)
2023-09-24 23:05:24 +02:00
self.load_grammar(state['grammar_string'])
2023-09-15 23:27:27 +02:00
logit_processors = LogitsProcessorList()
if state['ban_eos_token']:
2023-09-18 17:15:02 +02:00
logit_processors.append(partial(ban_eos_logits_processor, self.model.token_eos()))
2023-09-15 23:27:27 +02:00
if state['custom_token_bans']:
to_ban = [int(x) for x in state['custom_token_bans'].split(',')]
if len(to_ban) > 0:
logit_processors.append(partial(custom_token_ban_logits_processor, to_ban))
completion_chunks = self.model.create_completion(
2023-06-17 01:35:38 +02:00
prompt=prompt,
max_tokens=state['max_new_tokens'],
temperature=state['temperature'],
top_p=state['top_p'] if state['top_p'] < 1 else 0.999,
min_p=state['min_p'],
typical_p=state['typical_p'],
frequency_penalty=state['frequency_penalty'],
presence_penalty=state['presence_penalty'],
repeat_penalty=state['repetition_penalty'],
top_k=state['top_k'],
stream=True,
seed=int(state['seed']) if state['seed'] != -1 else None,
2023-06-18 00:08:25 +02:00
tfs_z=state['tfs'],
2023-06-17 01:35:38 +02:00
mirostat_mode=int(state['mirostat_mode']),
mirostat_tau=state['mirostat_tau'],
mirostat_eta=state['mirostat_eta'],
2023-09-15 23:27:27 +02:00
logits_processor=logit_processors,
grammar=self.grammar
)
2023-06-06 18:06:05 +02:00
output = ""
for completion_chunk in completion_chunks:
if shared.stop_everything:
break
2023-11-25 15:33:37 +01:00
text = completion_chunk['choices'][0]['text']
output += text
if callback:
callback(text)
2023-06-06 18:06:05 +02:00
return output
2023-03-19 07:42:10 +01:00
2023-06-17 01:35:38 +02:00
def generate_with_streaming(self, *args, **kwargs):
with Iteratorize(self.generate, args, kwargs, callback=None) as generator:
2023-03-31 19:27:01 +02:00
reply = ''
2023-03-19 07:42:10 +01:00
for token in generator:
reply += token
yield reply