text-generation-webui/download-model.py

278 lines
10 KiB
Python
Raw Normal View History

2023-01-06 19:57:31 -03:00
'''
Downloads models from Hugging Face to models/model-name.
Example:
2023-04-09 17:00:59 -03:00
python download-model.py facebook/opt-1.3b
2023-01-06 19:57:31 -03:00
'''
import argparse
import base64
import datetime
2023-03-31 01:31:47 -03:00
import hashlib
import json
import re
import sys
from pathlib import Path
import requests
import tqdm
from tqdm.contrib.concurrent import thread_map
2023-04-09 16:59:59 -03:00
def select_model_from_default_options():
models = {
2023-04-01 14:47:47 -03:00
"OPT 6.7B": ("facebook", "opt-6.7b", "main"),
"OPT 2.7B": ("facebook", "opt-2.7b", "main"),
"OPT 1.3B": ("facebook", "opt-1.3b", "main"),
"OPT 350M": ("facebook", "opt-350m", "main"),
"GALACTICA 6.7B": ("facebook", "galactica-6.7b", "main"),
"GALACTICA 1.3B": ("facebook", "galactica-1.3b", "main"),
"GALACTICA 125M": ("facebook", "galactica-125m", "main"),
"Pythia-6.9B-deduped": ("EleutherAI", "pythia-6.9b-deduped", "main"),
"Pythia-2.8B-deduped": ("EleutherAI", "pythia-2.8b-deduped", "main"),
"Pythia-1.4B-deduped": ("EleutherAI", "pythia-1.4b-deduped", "main"),
"Pythia-410M-deduped": ("EleutherAI", "pythia-410m-deduped", "main"),
}
2023-05-10 19:00:14 -03:00
choices = {}
print("Select the model that you want to download:\n")
for i, name in enumerate(models):
char = chr(ord('A') + i)
choices[char] = name
print(f"{char}) {name}")
2023-05-10 19:00:14 -03:00
char_hugging = chr(ord('A') + len(models))
print(f"{char_hugging}) Manually specify a Hugging Face model")
char_exit = chr(ord('A') + len(models) + 1)
print(f"{char_exit}) Do not download a model")
print()
print("Input> ", end='')
choice = input()[0].strip().upper()
if choice == char_exit:
exit()
elif choice == char_hugging:
2023-05-10 19:00:14 -03:00
print("""\nType the name of your desired Hugging Face model in the format organization/name.
Examples:
facebook/opt-1.3b
2023-04-01 15:03:24 -03:00
EleutherAI/pythia-1.4b-deduped
""")
print("Input> ", end='')
model = input()
branch = "main"
else:
arr = models[choices[choice]]
model = f"{arr[0]}/{arr[1]}"
branch = arr[2]
return model, branch
2023-04-09 16:59:59 -03:00
def sanitize_model_and_branch_names(model, branch):
if model[-1] == '/':
model = model[:-1]
if branch is None:
branch = "main"
else:
pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
if not pattern.match(branch):
raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")
return model, branch
def get_download_links_from_huggingface(model, branch, text_only=False):
base = "https://huggingface.co"
2023-04-19 16:02:32 +00:00
page = f"/api/models/{model}/tree/{branch}"
cursor = b""
links = []
sha256 = []
classifications = []
has_pytorch = False
has_pt = False
2023-03-31 17:33:10 -03:00
has_ggml = False
has_safetensors = False
2023-03-16 21:31:39 -03:00
is_lora = False
while True:
2023-04-19 16:02:32 +00:00
url = f"{base}{page}" + (f"?cursor={cursor.decode()}" if cursor else "")
r = requests.get(url)
r.raise_for_status()
content = r.content
dict = json.loads(content)
if len(dict) == 0:
break
2023-03-02 14:05:21 -03:00
for i in range(len(dict)):
fname = dict[i]['path']
2023-03-16 21:31:39 -03:00
if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')):
is_lora = True
2023-03-16 21:31:39 -03:00
is_pytorch = re.match("(pytorch|adapter)_model.*\.bin", fname)
is_safetensors = re.match(".*\.safetensors", fname)
is_pt = re.match(".*\.pt", fname)
is_ggml = re.match(".*ggml.*\.bin", fname)
is_tokenizer = re.match("(tokenizer|ice).*\.model", fname)
2023-03-26 19:41:14 +02:00
is_text = re.match(".*\.(txt|json|py|md)", fname) or is_tokenizer
if any((is_pytorch, is_safetensors, is_pt, is_ggml, is_tokenizer, is_text)):
if 'lfs' in dict[i]:
sha256.append([fname, dict[i]['lfs']['oid']])
if is_text:
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
classifications.append('text')
continue
2023-04-09 16:59:59 -03:00
if not text_only:
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
if is_safetensors:
has_safetensors = True
classifications.append('safetensors')
elif is_pytorch:
has_pytorch = True
classifications.append('pytorch')
elif is_pt:
has_pt = True
classifications.append('pt')
2023-03-31 17:33:10 -03:00
elif is_ggml:
has_ggml = True
classifications.append('ggml')
2023-03-16 21:31:39 -03:00
cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
cursor = base64.b64encode(cursor)
cursor = cursor.replace(b'=', b'%3D')
# If both pytorch and safetensors are available, download safetensors only
if (has_pytorch or has_pt) and has_safetensors:
for i in range(len(classifications) - 1, -1, -1):
if classifications[i] in ['pytorch', 'pt']:
links.pop(i)
return links, sha256, is_lora
2023-04-09 16:59:59 -03:00
def get_output_folder(model, branch, is_lora, base_folder=None):
if base_folder is None:
base_folder = 'models' if not is_lora else 'loras'
output_folder = f"{'_'.join(model.split('/')[-2:])}"
if branch != 'main':
output_folder += f'_{branch}'
output_folder = Path(base_folder) / output_folder
2023-04-09 16:59:59 -03:00
return output_folder
def get_single_file(url, output_folder, start_from_scratch=False):
filename = Path(url.rsplit('/', 1)[1])
output_path = output_folder / filename
if output_path.exists() and not start_from_scratch:
# Check if the file has already been downloaded completely
r = requests.get(url, stream=True)
total_size = int(r.headers.get('content-length', 0))
if output_path.stat().st_size >= total_size:
return
# Otherwise, resume the download from where it left off
headers = {'Range': f'bytes={output_path.stat().st_size}-'}
mode = 'ab'
else:
headers = {}
mode = 'wb'
r = requests.get(url, stream=True, headers=headers)
with open(output_path, mode) as f:
total_size = int(r.headers.get('content-length', 0))
block_size = 1024
with tqdm.tqdm(total=total_size, unit='iB', unit_scale=True, bar_format='{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}') as t:
for data in r.iter_content(block_size):
t.update(len(data))
f.write(data)
2023-03-31 01:31:47 -03:00
2023-04-09 16:59:59 -03:00
def start_download_threads(file_list, output_folder, start_from_scratch=False, threads=1):
thread_map(lambda url: get_single_file(url, output_folder, start_from_scratch=start_from_scratch), file_list, max_workers=threads, disable=True)
def download_model_files(model, branch, links, sha256, output_folder, start_from_scratch=False, threads=1):
# Creating the folder and writing the metadata
if not output_folder.exists():
output_folder.mkdir()
with open(output_folder / 'huggingface-metadata.txt', 'w') as f:
f.write(f'url: https://huggingface.co/{model}\n')
f.write(f'branch: {branch}\n')
f.write(f'download date: {str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))}\n')
sha256_str = ''
for i in range(len(sha256)):
sha256_str += f' {sha256[i][1]} {sha256[i][0]}\n'
if sha256_str != '':
f.write(f'sha256sum:\n{sha256_str}')
# Downloading the files
print(f"Downloading the model to {output_folder}")
start_download_threads(links, output_folder, start_from_scratch=start_from_scratch, threads=threads)
def check_model_files(model, branch, links, sha256, output_folder):
# Validate the checksums
validated = True
for i in range(len(sha256)):
fpath = (output_folder / sha256[i][0])
if not fpath.exists():
print(f"The following file is missing: {fpath}")
validated = False
continue
with open(output_folder / sha256[i][0], "rb") as f:
bytes = f.read()
file_hash = hashlib.sha256(bytes).hexdigest()
if file_hash != sha256[i][1]:
print(f'Checksum failed: {sha256[i][0]} {sha256[i][1]}')
2023-03-31 01:31:47 -03:00
validated = False
2023-04-09 16:59:59 -03:00
else:
print(f'Checksum validated: {sha256[i][0]} {sha256[i][1]}')
2023-04-09 16:59:59 -03:00
if validated:
print('[+] Validated checksums of all model files!')
2023-03-31 01:31:47 -03:00
else:
2023-04-09 16:59:59 -03:00
print('[-] Invalid checksums. Rerun download-model.py with the --clean flag.')
2023-04-09 16:59:59 -03:00
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('MODEL', type=str, default=None, nargs='?')
parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.')
parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.')
parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).')
parser.add_argument('--output', type=str, default=None, help='The folder where the model should be saved.')
parser.add_argument('--clean', action='store_true', help='Does not resume the previous download.')
parser.add_argument('--check', action='store_true', help='Validates the checksums of model files.')
args = parser.parse_args()
2023-04-09 16:59:59 -03:00
branch = args.branch
model = args.MODEL
if model is None:
model, branch = select_model_from_default_options()
# Cleaning up the model/branch names
try:
model, branch = sanitize_model_and_branch_names(model, branch)
except ValueError as err_branch:
print(f"Error: {err_branch}")
sys.exit()
# Getting the download links from Hugging Face
links, sha256, is_lora = get_download_links_from_huggingface(model, branch, text_only=args.text_only)
# Getting the output folder
output_folder = get_output_folder(model, branch, is_lora, base_folder=args.output)
if args.check:
# Check previously downloaded files
check_model_files(model, branch, links, sha256, output_folder)
else:
# Download files
download_model_files(model, branch, links, sha256, output_folder, threads=args.threads)