text-generation-webui/modules/text_generation.py

397 lines
14 KiB
Python
Raw Normal View History

import ast
2023-06-25 01:38:54 -03:00
import copy
import random
2023-02-23 13:28:30 -03:00
import re
import time
import traceback
2023-02-23 13:28:30 -03:00
import numpy as np
import torch
import transformers
2023-02-23 14:41:42 -03:00
import modules.shared as shared
2023-06-25 01:38:54 -03:00
from modules.callbacks import (
Iteratorize,
Stream,
_StopEverythingStoppingCriteria
)
from modules.extensions import apply_extensions
2023-02-23 14:41:42 -03:00
from modules.html_generator import generate_4chan_html, generate_basic_html
from modules.logging_colors import logger
2023-04-08 03:36:04 +03:00
from modules.models import clear_torch_cache, local_rank
2023-02-23 14:41:42 -03:00
def generate_reply(*args, **kwargs):
shared.generation_lock.acquire()
try:
for result in _generate_reply(*args, **kwargs):
yield result
finally:
shared.generation_lock.release()
def get_max_prompt_length(state):
2023-06-06 07:42:23 -03:00
return state['truncation_length'] - state['max_new_tokens']
def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_length=None):
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel']:
2023-03-06 08:45:49 -03:00
input_ids = shared.tokenizer.encode(str(prompt))
input_ids = np.array(input_ids).reshape(1, len(input_ids))
return input_ids
else:
input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', add_special_tokens=add_special_tokens)
2023-04-10 16:44:22 -03:00
# This is a hack for making replies more creative.
if not add_bos_token and input_ids[0][0] == shared.tokenizer.bos_token_id:
input_ids = input_ids[:, 1:]
# Handling truncation
if truncation_length is not None:
input_ids = input_ids[:, -truncation_length:]
2023-06-16 20:35:38 -03:00
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'ExllamaModel'] or shared.args.cpu:
return input_ids
elif shared.args.flexgen:
return input_ids.numpy()
elif shared.args.deepspeed:
return input_ids.to(device=local_rank)
elif torch.has_mps:
device = torch.device('mps')
return input_ids.to(device)
else:
return input_ids.cuda()
def get_encoded_length(prompt):
length_after_extensions = apply_extensions('tokenized_length', prompt)
if length_after_extensions is not None:
return length_after_extensions
return len(encode(prompt)[0])
def decode(output_ids, skip_special_tokens=True):
return shared.tokenizer.decode(output_ids, skip_special_tokens)
# Removes empty replies from gpt4chan outputs
def fix_gpt4chan(s):
for i in range(10):
s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
s = re.sub("--- [0-9]*\n *\n---", "---", s)
s = re.sub("--- [0-9]*\n\n\n---", "---", s)
return s
# Fix the LaTeX equations in galactica
def fix_galactica(s):
s = s.replace(r'\[', r'$')
s = s.replace(r'\]', r'$')
s = s.replace(r'\(', r'$')
s = s.replace(r'\)', r'$')
s = s.replace(r'$$', r'$')
s = re.sub(r'\n', r'\n\n', s)
s = re.sub(r"\n{3,}", "\n\n", s)
return s
2023-05-11 15:37:04 -03:00
def get_reply_from_output_ids(output_ids, input_ids, original_question, state, is_chat=False):
if shared.is_seq2seq:
reply = decode(output_ids, state['skip_special_tokens'])
else:
new_tokens = len(output_ids) - len(input_ids[0])
reply = decode(output_ids[-new_tokens:], state['skip_special_tokens'])
2023-05-11 17:55:50 -03:00
# Prevent LlamaTokenizer from skipping a space
if type(shared.tokenizer) in [transformers.LlamaTokenizer, transformers.LlamaTokenizerFast] and len(output_ids) > 0:
2023-05-11 17:55:50 -03:00
if shared.tokenizer.convert_ids_to_tokens(int(output_ids[-new_tokens])).startswith(''):
reply = ' ' + reply
return reply
def formatted_outputs(reply, model_name):
if any(s in model_name for s in ['gpt-4chan', 'gpt4chan']):
2023-05-11 15:37:04 -03:00
reply = fix_gpt4chan(reply)
return reply, generate_4chan_html(reply)
else:
return reply, generate_basic_html(reply)
2023-03-22 18:40:20 +00:00
def set_manual_seed(seed):
2023-04-10 10:53:31 -03:00
seed = int(seed)
if seed == -1:
seed = random.randint(1, 2**31)
2023-04-24 19:24:12 -03:00
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
2023-04-24 19:24:12 -03:00
2023-04-10 10:53:31 -03:00
return seed
2023-03-22 18:40:20 +00:00
2023-03-27 13:23:59 -03:00
def stop_everything_event():
shared.stop_everything = True
def generate_reply_wrapper(question, state, stopping_strings=None):
reply = question if not shared.is_seq2seq else ''
yield formatted_outputs(reply, shared.model_name)
for reply in generate_reply(question, state, stopping_strings, is_chat=False):
if not shared.is_seq2seq:
2023-05-11 17:11:10 -03:00
reply = question + reply
2023-05-11 15:37:04 -03:00
yield formatted_outputs(reply, shared.model_name)
def apply_stopping_strings(reply, all_stop_strings):
stop_found = False
for string in all_stop_strings:
idx = reply.find(string)
if idx != -1:
reply = reply[:idx]
stop_found = True
break
if not stop_found:
# If something like "\nYo" is generated just before "\nYou:"
# is completed, trim it
for string in all_stop_strings:
for j in range(len(string) - 1, 0, -1):
if reply[-j:] == string[:j]:
reply = reply[:-j]
break
else:
continue
break
return reply, stop_found
def _generate_reply(question, state, stopping_strings=None, is_chat=False):
generate_func = apply_extensions('custom_generate_reply')
if generate_func is None:
if shared.model_name == 'None' or shared.model is None:
logger.error("No model is loaded! Select one in the Model tab.")
yield ''
return
2023-06-16 20:35:38 -03:00
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'ExllamaModel']:
generate_func = generate_reply_custom
elif shared.args.flexgen:
generate_func = generate_reply_flexgen
else:
generate_func = generate_reply_HF
2023-04-24 19:24:12 -03:00
# Preparing the input
original_question = question
2023-05-11 15:37:04 -03:00
if not is_chat:
state = apply_extensions('state', state)
question = apply_extensions('input', question, state)
# Finding the stopping strings
all_stop_strings = []
for st in (stopping_strings, ast.literal_eval(f"[{state['custom_stopping_strings']}]")):
if type(st) is list and len(st) > 0:
all_stop_strings += st
2023-05-04 15:56:06 -03:00
if shared.args.verbose:
print(f'\n\n{question}\n--------------------\n')
shared.stop_everything = False
clear_torch_cache()
seed = set_manual_seed(state['seed'])
last_update = -1
reply = ''
is_stream = state['stream']
if len(all_stop_strings) > 0 and not state['stream']:
2023-06-25 01:38:54 -03:00
state = copy.deepcopy(state)
state['stream'] = True
for reply in generate_func(question, original_question, seed, state, stopping_strings, is_chat=is_chat):
reply, stop_found = apply_stopping_strings(reply, all_stop_strings)
if is_stream:
cur_time = time.time()
if cur_time - last_update > 0.041666666666666664: # Limit streaming to 24 fps
last_update = cur_time
yield reply
if stop_found:
break
if not is_chat:
reply = apply_extensions('output', reply, state)
yield reply
2023-04-24 19:24:12 -03:00
def generate_reply_HF(question, original_question, seed, state, stopping_strings=None, is_chat=False):
generate_params = {}
for k in ['max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'repetition_penalty_range', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'tfs', 'top_a', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta']:
generate_params[k] = state[k]
for k in ['epsilon_cutoff', 'eta_cutoff']:
if state[k] > 0:
generate_params[k] = state[k] * 1e-4
if state['ban_eos_token']:
generate_params['suppress_tokens'] = [shared.tokenizer.eos_token_id]
if shared.args.no_cache:
generate_params.update({'use_cache': False})
if shared.args.deepspeed:
generate_params.update({'synced_gpus': True})
2023-02-27 23:03:35 -03:00
2023-04-24 19:24:12 -03:00
# Encode the input
input_ids = encode(question, add_bos_token=state['add_bos_token'], truncation_length=get_max_prompt_length(state))
2023-03-08 11:26:29 -03:00
output = input_ids[0]
cuda = not any((shared.args.cpu, shared.args.deepspeed))
2023-04-24 19:24:12 -03:00
# Add the encoded tokens to generate_params
2023-06-06 07:42:23 -03:00
question, input_ids, inputs_embeds = apply_extensions('tokenizer', state, question, input_ids, None)
original_input_ids = input_ids
generate_params.update({'inputs': input_ids})
if inputs_embeds is not None:
2023-04-07 11:14:32 -03:00
generate_params.update({'inputs_embeds': inputs_embeds})
# Stopping criteria / eos token
eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else []
generate_params['eos_token_id'] = eos_token_ids
generate_params['stopping_criteria'] = transformers.StoppingCriteriaList()
generate_params['stopping_criteria'].append(_StopEverythingStoppingCriteria())
t0 = time.time()
2023-03-12 02:31:45 -03:00
try:
if not is_chat and not shared.is_seq2seq:
yield ''
2023-03-12 02:31:45 -03:00
# Generate the entire reply at once.
if not state['stream']:
with torch.no_grad():
output = shared.model.generate(**generate_params)[0]
if cuda:
output = output.cuda()
2023-05-11 15:37:04 -03:00
yield get_reply_from_output_ids(output, input_ids, original_question, state, is_chat=is_chat)
2023-03-12 02:31:45 -03:00
# Stream the reply 1 token at a time.
# This is based on the trick of using 'stopping_criteria' to create an iterator.
else:
2023-03-12 02:31:45 -03:00
2023-06-16 21:44:56 -03:00
def generate_with_callback(callback=None, *args, **kwargs):
2023-03-12 02:31:45 -03:00
kwargs['stopping_criteria'].append(Stream(callback_func=callback))
clear_torch_cache()
with torch.no_grad():
shared.model.generate(**kwargs)
def generate_with_streaming(**kwargs):
2023-06-16 21:44:56 -03:00
return Iteratorize(generate_with_callback, [], kwargs, callback=None)
2023-03-12 02:31:45 -03:00
with generate_with_streaming(**generate_params) as generator:
2023-03-12 02:31:45 -03:00
for output in generator:
2023-05-11 15:37:04 -03:00
yield get_reply_from_output_ids(output, input_ids, original_question, state, is_chat=is_chat)
if output[-1] in eos_token_ids:
2023-03-12 02:31:45 -03:00
break
except Exception:
traceback.print_exc()
finally:
t1 = time.time()
original_tokens = len(original_input_ids[0])
new_tokens = len(output) - (original_tokens if not shared.is_seq2seq else 0)
print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})')
return
def generate_reply_custom(question, original_question, seed, state, stopping_strings=None, is_chat=False):
seed = set_manual_seed(state['seed'])
t0 = time.time()
2023-05-19 19:46:18 +02:00
reply = ''
try:
2023-05-11 15:37:04 -03:00
if not is_chat:
yield ''
if not state['stream']:
2023-06-16 20:35:38 -03:00
reply = shared.model.generate(question, state)
yield reply
else:
2023-06-16 20:35:38 -03:00
for reply in shared.model.generate_with_streaming(question, state):
yield reply
except Exception:
traceback.print_exc()
finally:
t1 = time.time()
original_tokens = len(encode(original_question)[0])
new_tokens = len(encode(original_question + reply)[0]) - original_tokens
print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})')
return
def generate_reply_flexgen(question, original_question, seed, state, stopping_strings=None, is_chat=False):
generate_params = {}
for k in ['max_new_tokens', 'do_sample', 'temperature']:
generate_params[k] = state[k]
if state['stream']:
generate_params['max_new_tokens'] = 8
# Encode the input
input_ids = encode(question, add_bos_token=state['add_bos_token'], truncation_length=get_max_prompt_length(state))
output = input_ids[0]
# Find the eos tokens
eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else []
if not state['ban_eos_token']:
generate_params['stop'] = eos_token_ids[-1]
# Add the encoded tokens to generate_params
question, input_ids, inputs_embeds = apply_extensions('tokenizer', state, question, input_ids, None)
original_input_ids = input_ids
generate_params.update({'inputs': input_ids})
if inputs_embeds is not None:
generate_params.update({'inputs_embeds': inputs_embeds})
t0 = time.time()
try:
2023-05-11 15:37:04 -03:00
if not is_chat:
yield ''
# Generate the entire reply at once.
if not state['stream']:
with torch.no_grad():
output = shared.model.generate(**generate_params)[0]
2023-05-11 15:37:04 -03:00
yield get_reply_from_output_ids(output, input_ids, original_question, state, is_chat=is_chat)
2023-03-12 02:31:45 -03:00
# Stream the output naively for FlexGen since it doesn't support 'stopping_criteria'
else:
for i in range(state['max_new_tokens'] // 8 + 1):
if shared.stop_everything:
break
2023-03-12 02:31:45 -03:00
clear_torch_cache()
with torch.no_grad():
output = shared.model.generate(**generate_params)[0]
if np.count_nonzero(np.isin(input_ids[0], eos_token_ids)) < np.count_nonzero(np.isin(output, eos_token_ids)):
2023-02-26 00:36:04 -03:00
break
yield get_reply_from_output_ids(output, original_input_ids, original_question, state)
input_ids = np.reshape(output, (1, output.shape[0]))
generate_params.update({'inputs': input_ids})
2023-02-26 00:36:04 -03:00
except Exception:
traceback.print_exc()
2023-03-12 02:31:45 -03:00
finally:
t1 = time.time()
original_tokens = len(original_input_ids[0])
new_tokens = len(output) - (original_tokens if not shared.is_seq2seq else 0)
2023-04-10 10:53:31 -03:00
print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})')
2023-03-12 02:31:45 -03:00
return