* fix track_max_mem in forward_batch_wo_cache_flash_attn_train
* remove unnecessary Adam(W) optimizer tensors.
reduces optimizer memory overhead from 7*modelsize to 2*modelsize.
additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t.
bumps training checkpoint file version, but old checkpoints can still be read.
new version with less tensors is saved.
* add gradient clipping to AdamW
* Fix reset of unused g->nodes and g->grads to NULL
* implement gradient checkpointing for training
reduces memory overhead from O(n_layer) to O(sqrt(n_layer))
as explained in readme of https://github.com/cybertronai/gradient-checkpointing
* remove unused compute buffer 3
* add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
* change AdamW decay parameter to work like the torch AdamW decay parameter
It is now relative to Adam learning rate `alpha*sched`.
Before that it was relative to `sched` only.
`alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1]
* change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT
* change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW
btw: the default weight decay parameter for torch.optim.AdamW is 0.01
* bug fixes for cross entropy loss
ggml_cross_entropy_loss: sums where not correctly added in workload of each thread
ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues
guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16
cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup.
so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance.
* fix test-grad0 for cross_entropy_loss
the second argument to cross_entropy_loss must sum up to 1 for each row
* fix test-grad0 for soft_max
dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work
instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0)
* improve finite differences of test-grad0 by using double instead of float
* change cross_entropy_loss to output average over all rows
this helps keeping the loss and gradients in a sane range
* improve gradient checkpointing
sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal.
since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different:
```
given: n, u, v
objective: minimize(a*u+b*v) where a*b=n, a>0, b>0
b=n/a
minimize(a*u+v*n/a)
diff(a*u+v*n/a, a) = u - (v*n/a)/a
diff(a*u+v*n/a, a) == 0
u - (v*n/a)/a == 0
u == v*n/(a*a)
u*a*a = v*n
a*a = v*n/u
a = sqrt(n*v/u)
```
this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage.
* disable gradient checkpointing debug output
* llama : fix rope usage in train-text-from-scratch after ChatGLM change
* add more training parameters:
--enable-restart N Only for Adam optimizer. Enable restarts of cos-decay
--disable-restart N Only for Adam optimizer. Disable restarts of cos-decay
--opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero.
--opt-delta N Maximum delta for delta convergence test. Disabled when <= zero.
--opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero.
--adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero.
--adam-min-alpha N Adam minimum learning rate alpha, usually 0.1 * alpha
* replace memcpy with reshape operation so that the graph is not cut at the input
this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it
* remove unused function argument from get_example_targets_batch
* measure and print total training time
* add optimization callback to ggml_opt_resume_g
this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)).
can be used for dynamic learning schedule and setting input data for batches before each iteration
* use optimization callback in training
allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters
reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration
* add minimum number of tensor dimensions to apply weight decay (default 2)
this allows to not apply weight decay to bias parameters
* rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup
* fix increase of model.train_samples and model.train_tokens
now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations
* change sampling parameters for prediction after training to defaults of common.h
and clarify what is context for prediction and what are generated tokens
* tighten abs error bounds for cross_entropy_loss in test-grad0
* add conditional compilation of using F16 exp in flash attention
uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention
* tighten abs error bounds for flash_attn in test-grad0
* tighten abs error bounds for sqrt in test-grad0
* remove out-commented vectorized code of opt_adam
the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead
* ggml : update ggml_rms_norm_back with configurable eps
* llama training : fix ggml_rms_norm_back calls to pass configurable eps
* remove trailing whitespace
* add train function using automatic gradient checkpointing backward pass and allocator
* in train function replace add_inplace by regular add
because using add_inplace seems to result in different gradients
* don't use allocate hash_map on context
because the context has no_alloc=True when using memory allocator resulting in NULL data pointers
* correctly clone reshape and permute operations by also cloning tensor->nb values
* fix variable name and add missing type cast
* terminate recursive tensor cloning when reaching tensor without src tensors
* correctly clone view tensors by setting data pointers
without this the checkpointing would only work when being used together with memory allocator
* fix variable names
* swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn`
* add input tensors as checkpoints
so that recursive tensor cloning of gradient checkpointing terminates on input tensors
* fix variable name and add missing boolean negation
* make sure some tensors are not reallocated by inserting new temporary nodes depending on them:
output and parameter gradient tensors need to be available at the end of the graph execution
parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration
checkpoint tensors are allocated all together to reduce memory allocator fragmentation
afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs
* fix ASSERT to work with zero layers
* add training options whether to use allocator and/or unified training function
* integrate unified training function which may use memory allocator
the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing
* format name of cloned tensors with " (clone)" suffix
* set names for tensors in unified train function for easier debugging
* allocate graph on context using ggml_new_graph
* remove handwritten training functions
* remove unused training parameters "use_scratch" and "use_unified"
* remove trailing whitespace
* remove unused train params: mem_compute1_gb & mem_compute2_gb
mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions
mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented)
* remove unused forward_batch function
* add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly
* only use ggml_allocr_alloc when tensor has NULL data and is no view
* fix test when to create temporary backward graph
temporary backward graph is only necessary when using checkpointing
* fix memory "leak" in optimizers
each iteration a new cplan with new memory for work data was allocated.
now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data.
* reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator
with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory.
the computation results are the same
* add missing lctx argument to get_example_targets_batch
* implement llama model file saving using gguf
checkpoint loading and saving disabled, to be replaced by loading and saving via gguf
* implement loading/saving of checkpointing files using GGUF
* bug fixes
* add checkpoint file version for future compatibility
* update readme with gguf filenames
* save & load opt->just_initialized value
* add first draft for checkpoint conversion script
* add gguf arch and ftype
* save opt parameter counter as uint64
* add gguf key and tensor names for optimizer and training
* add layer_norm_rms_eps to checkpoint convert script
* use same GGUF_GET_KEY macro as in llama.cpp
* use norm_rms_eps, and rope parameters and command line options to set them
* fix memory corruption bug in gguf
ctx->kv and ctx->infos was reallocated using not-aligned realloc, but freed with aligned free.
to fix this a GGML_ALIGNED_REALLOC was added, but there is no posix_memalign_realloc function.
so on non-windows and non-mingw32 platforms we fall back to aligned malloc, followed by copying
and freeing the old data.
* add gguf example cmake file
* bug fixes in tokenize_file
* bug fixes in load_llama_model_gguf
* bug fix: init model when no checkpoint was loaded
* bug fix in read_tensor_by_name
* bug fix in load_opt_context_gguf
* avoid printing lots of spaced on the unusual case that loss gets nan
* set name of tensors with empty name from what was read from gguf
* remove trailing whitespace
* print data checksums before saving and after loading to verify correctness
* bug fixes for convert-train-checkpoint-to-gguf
* temporarily add code to write old checkpoint files
used to verify that old checkpoint files are correctly converted to gguf
* bug fixes for convert-train-checkpoint-to-gguf.py loading checkpoints with opt_version=0
* remove code used to verify correctness of checkpoint file conversion
* remove trailing whitespace
* remove prediction related code
use main for prediction, it is better optimized
* update train-text-from-scratch README.md
* fix non-windows GGML_ALIGNED_REALLOC
* add missing blank line at end of file
* remove GGML_ALIGNED_REALLOC and use normal malloc/realloc/free for gguf ctx->kv & ctx->infos
* train : fix compile warnings
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Speedup tokenization
On current master it takes ~3.2 seconds to tokenize
Wikitext. With this change it becomes ~525 ms.
* Fixit: it was missing the piece after the last found occurence
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Make ggml-cuda.cu build with QK_K = 64
Using LLAMA_CUDA_FORCE_DMMV = ON and -nommq it runs and produces
a meaningful result.
* k_quants tuning for Falcon-7b
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* tests : write a Python tokenizer test (wip)
* llama : prefix input text for tokenization with whitespace
* llama : distinguish pieces from decoded text + fix detokenization
* common : add comments
* examples : no longer manually add leading space when tokenizing
* tests : use Python to generate tokenizer tests for C++
* tests : add option to tokenize text files
ggml-ci
* tests : add test-tokenizer-1.py
* llama.cpp : fix LF token
* hellaswag : move the concat space for clarity
* tests : add falcon tests (py + cpp, currently do not pass Unicode)
ggml-ci
* common : temporary separate llama_detokenize calls for SPM and BPE
---------
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
The use of special characters within source files can break compiling on some computers with different region and language settings. Using Unicode escape sequences should allow for the code to be compiled on all setups without needing to change your computers settings or switch regions.
* llama.cpp : fix spm whitespace escaping + clean up
* main.cpp : spm - add whitespace in front of prompt
* test-tokenizer-0.cpp : spm - add whitespace in front of prompt
* Add llama_beam_search().
* Add '// Beam search' heading to llama.{h,cpp} after llama_grammar_accept_token().
* Add space around * pointers and & references.
* Add spaces around comparison and assignment operators.
* Prefer west const.
* Use llama_ prefix for structs in global namespace.
* Delete obsolete comment from an earlier revision.
* Change eos to eob in llama_beam and llama_beam_view structs.
* use hipblas based on cublas
* Update Makefile for the Cuda kernels
* Expand arch list and make it overrideable
* Fix multi GPU on multiple amd architectures with rocblas_initialize() (#5)
* add hipBLAS to README
* new build arg LLAMA_CUDA_MMQ_Y
* fix half2 decomposition
* Add intrinsics polyfills for AMD
* AMD assembly optimized __dp4a
* Allow overriding CC_TURING
* use "ROCm" instead of "CUDA"
* ignore all build dirs
* Add Dockerfiles
* fix llama-bench
* fix -nommq help for non CUDA/HIP
---------
Co-authored-by: YellowRoseCx <80486540+YellowRoseCx@users.noreply.github.com>
Co-authored-by: ardfork <134447697+ardfork@users.noreply.github.com>
Co-authored-by: funnbot <22226942+funnbot@users.noreply.github.com>
Co-authored-by: Engininja2 <139037756+Engininja2@users.noreply.github.com>
Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
Co-authored-by: jammm <2500920+jammm@users.noreply.github.com>
Co-authored-by: jdecourval <7315817+jdecourval@users.noreply.github.com>
* metal: better memory alloc w/ concurrency dispatch
The ggml-alloc should only free tensors at memory barriers.
* ggml-alloc: avoid return silently
In certain cases, the allocate_node() function may silently return
without performing any memory allocation.
* Improve UNK, BOS, EOS token handling when converting without metadata.
* Allow importing as a module.
* Remove some obsolete code and minor cleanups.
* Set default UNK token mapping from -1 to 0 in llama.cpp
* Try to handle overflow due to buggy Windows Python with a better error message
* Improve LLaMA-2 2-, 3- and 4-bit quantization
* Q3_K_S: use Q5_K for 1st 2 layers of attention.wv and feed_forward.w2
* Q4_K_S: use Q6_K for 1st 2 layers of attention.wv and feed_forward.w2
* Q2_K and Q3_K_M: use Q5_K instead of Q4_K for 1st 2 layers of
attention.wv and feed_forward.w2
This leads to a slight model sized increase as follows:
Q2_K : 2.684G vs 2.670G
Q3_K_S: 2.775G vs 2.745G
Q3_K_M: 3.071G vs 3.057G
Q4_K_S: 3.592G vs 3.563G
LLaMA-2 PPL for context 512 changes as follows:
Q2_K : 6.6691 vs 6.8201
Q3_K_S: 6.2129 vs 6.2584
Q3_K_M: 6.0387 vs 6.1371
Q4_K_S: 5.9138 vs 6.0041
There are improvements for LLaMA-1 as well, but they are
way smaller than the above.
* Minor 4-bit quantization improvement
For the same model size as previus commit, we get
PPL = 5.9069 vs 5.9138.
* Some more fine tuning
* Adding make_qkx2_quants
With it, we get PPL = 5.8828 for L2-7B Q4_K_S.
* Another minor improvement
* Q2_K improvement
Smaller model, lower perplexity.
7B: file size = 2.632G, PPL = 6.3772 vs original 2.670G PPL = 6.8201
12B: file size = 5.056G, PPL = 5.4577 vs original 5.130G PPL = 5.7178
It is mostly Q3_K except for tok_embeddings, attention.wq, attention.wk,
which are Q2_K
* Iterating
* Revert Q5_K back to make_qkx1_quants
* Better Q6_K
* make_qkx2_quants is better for Q5_K after all
* Fix after rebasing on master
* Fix for changed tensor names
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
use a different function for no_alloc to avoid breaking backwards compat, fixes lora
remove 512 n_batch limit
fixed 2048 batch size
cleanup
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* llama : add benchmark example
* add to examples CMakeLists.txt
* fix msvc build
* add missing include
* add Bessel's correction to stdev calculation
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* improve markdown formatting
* add missing include
* print warning is NDEBUG is not defined
* remove n_prompt and n_gen from the matrix, use each value separately instead
* better checks for non-optimized builds
* llama.cpp : fix MEM_REQ_SCRATCH0 reusing the value of n_ctx of the first call
* fix json formatting
* add sql output
* add basic cpu and gpu info (linx/cuda only)
* markdown: also show values that differ from the default
* markdown: add build id
* cleanup
* improve formatting
* formatting
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* metal: matrix-matrix multiplication kernel
This commit removes MPS and uses custom matrix-matrix multiplication
kernels for all quantization types. This commit also adds grouped-query
attention to support llama2 70B.
* metal: fix performance degradation from gqa
Integers are slow on the GPU, and 64-bit divides are extremely slow.
In the context of GQA, we introduce a 64-bit divide that cannot be
optimized out by the compiler, which results in a decrease of ~8% in
inference performance. This commit fixes that issue by calculating a
part of the offset with a 32-bit divide. Naturally, this limits the
size of a single matrix to ~4GB. However, this limitation should
suffice for the near future.
* metal: fix bugs for GQA and perplexity test.
I mixed up ne02 and nb02 in previous commit.
* add log_callback to llama_context_params for custom logging.
* Fix macro expansion on gcc
* Add struct llama_state for global variables and move log_callback there
* Turn log level into enum and some minor changes.
* Remove model_for_logging parameter (not needed anymore)
* Convert remaining fprintf(stderr, ...) calls to use new macros.
* Fix enum and initialize g_state
* Fix log calls after merge
* Fix missing static
* Add back all the new lines in the logging strings
* Add comment for llama_log_callback and replace remaining printf calls
---------
Co-authored-by: grahameth <->
Co-authored-by: Helmut <helmut.buhler@inf.h-brs.de>
* added stream saving context data to file to avoid allocating unnecessary amounts of memory
* generalised copying state data to file or buffer
* added comments explaining how copy_state_data works
* fixed trailing whitespaces
* fixed save load state example
* updated save load state to use public function in llama.cpp
* - restored breakage of the llama_copy_state_data API
- moved new logic for copying llama state data to internal function
* fixed function declaration order
* restored save load state example
* fixed whitepace
* removed unused llama-util.h include
* Apply suggestions from code review
Co-authored-by: slaren <slarengh@gmail.com>
* Apply code review suggestions
Co-authored-by: slaren <slarengh@gmail.com>
---------
Co-authored-by: slaren <slarengh@gmail.com>
* ggml : add graph tensor allocator
* ggml : don't calculate data pointer of unallocated tensors when creating a view with an offset
* ggml : refactor ggml_view_Nd into ggml_view_tensor_offset
* ggml : graph allocation in contexts
* allocate work buffer as a ggml_object in ggml_graph_compute_with_ctx
* llama.cpp : allocate graph in the context
* add GGML_PAD
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* metal: concurrently dispatch commands
Function `ggml_metal_graph_find_concurrency` will run and write
commands that can be issued concurrently to metal context `concur_list`
array, when `ggml_metal_graph_compute` is called for the first time.
* metal: don't call find_concurrency automatically.
* metal : code style changes
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* make rms_norm_eps a parameter
* add rms_norm_eps to command line
* fix baby llama, test-grad0
* use scientific notation for eps param in the help
ggml-ci
* llama, main : constrain sampling to grammar
* allow loading grammar from file
* fix whitespace errors
* handle & print parser errors
* add comments to grammar syntax and allow newlines where unambiguous
* add missing include
* support alternates in root rule
* fix bugs with empty token and EOS
* adjust JSON grammar
* remove swp file
* rewrite ternary expressions
Co-authored-by: Henri Vasserman <henv@hot.ee>
* use struct for grammar elements and add Unicode support
* add unicode escapes
* add inverse char ranges
* only sample full tokens (no peeking or truncation)
* llama : minor style changes
blindly applied in online editor - hopefully I didn't break something
* update help text
* add warning message if EOS is disabled
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* ci : run ctest
ggml-ci
* ci : add open llama 3B-v2 tests
ggml-ci
* ci : disable wget progress output
ggml-ci
* ci : add open llama 3B-v2 tg tests for q4 and q5 quantizations
ggml-ci
* tests : try to fix tail free sampling test
ggml-ci
* ci : add K-quants
ggml-ci
* ci : add short perplexity tests
ggml-ci
* ci : add README.md
* ppl : add --chunks argument to limit max number of chunks
ggml-ci
* ci : update README
* Implement customizable RoPE
The original RoPE has pre-defined parameters
theta_i = 10000^(−2(i−1)/d), for i in [1, 2, ..., d/2]
Our customizable RoPE, ggml_rope_custom_inplace, uses
theta_i = scale * base^(−2(i−1)/d), for i in [1, 2, ..., d/2]
with the default matches the original
scale = 1.0
base = 10000
The new command line arguments
--rope-freq-base
--rope-freq-scale
set the two new RoPE parameter.
Recent researches show changing these two parameters extends the context limit with minimal loss.
1. Extending Context to 8K
kaiokendev
https://kaiokendev.github.io/til#extending-context-to-8k
2. Extending Context Window of Large Language Models via Positional Interpolation
Shouyuan Chen, Sherman Wong, Liangjian Chen, Yuandong Tian
https://arxiv.org/abs/2306.15595
3. NTK-Aware Scaled RoPE allows LLaMA models to have extended (8k+) context size without any fine-tuning and minimal perplexity degradation.
https://www.reddit.com/user/bloc97https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
For the bold, try adding the following command line parameters to your favorite model:
-c 16384 --rope-freq-base 80000 --rope-freq-scale 0.5
* ggml-metal: fix custom rope
* common: fix argument names in help
* llama: increase MEM_REQ_EVAL for MODEL_3B
It avoids crashing for quantized weights on CPU.
Better ways to calculate the required buffer size would be better.
* llama: make MEM_REQ_EVAL depend on n_ctx
* server: use proper Content-Type in curl examples
Without the header Content-Type: application/json, curl will POST with
Content-Type: application/x-www-form-urlencoded
Though our simple server doesn't care, the httplib.h used has a limit
with CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 8192
With Content-Type: application/json, we can send large json data.
* style : minor fixes, mostly indentations
* ggml : fix asserts
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Initial implementation
* Remove debug print
* Restore signature of llama_init_from_gpt_params
* Free guidance context
* Make freeing of guidance_ctx conditional
* Make Classifier-Free Guidance a sampling function
* Correct typo. CFG already means context-free grammar.
* Record sampling time in llama_sample_classifier_free_guidance
* Shift all values by the max value before applying logsoftmax
* Fix styling based on review
* This allows LLAMA models that were previously incompatible with K quants to function mostly as normal. This happens when a model has a vocab != 32000, e.g 32001 which means it's not divisible by 256 or 64. Since the problematic dimensions only apply for `tok_embeddings.weight` and `output.weight` (dimentions 4096 x n_vocab), we can simply quantize these layers to Q8_0 whereas the majority of the hidden layers are still K-quanted since they have compatible dimensions.
* Fix indentation
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* As an alternative, to avoid failing on Metal due to lack of Q8_0 support, instead quantize tok_embeddings.weight to Q4_0 and retain output.weight as F16. This results in a net gain of about 55mb for a 7B model compared to previous approach, but should minimize adverse impact to model quality.
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* MPI support, first cut
* fix warnings, update README
* fixes
* wrap includes
* PR comments
* Update CMakeLists.txt
* Add GH workflow, fix test
* Add info to README
* mpi : trying to move more MPI stuff into ggml-mpi (WIP) (#2099)
* mpi : add names for layer inputs + prep ggml_mpi_graph_compute()
* mpi : move all MPI logic into ggml-mpi
Not tested yet
* mpi : various fixes - communication now works but results are wrong
* mpi : fix output tensor after MPI compute (still not working)
* mpi : fix inference
* mpi : minor
* Add OpenMPI to GH action
* [mpi] continue-on-error: true
* mpi : fix after master merge
* [mpi] Link MPI C++ libraries to fix OpenMPI
* tests : fix new llama_backend API
* [mpi] use MPI_INT32_T
* mpi : factor out recv / send in functions and reuse
* mpi : extend API to allow usage with outer backends (e.g. Metal)
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* ggml_graph_compute: deprecate using ggml_context, try resolve issue #287
* rewrite: no longer consider backward compitability; plan and make_plan
* minor: rename ctx as plan; const
* remove ggml_graph_compute from tests/test-grad0.c, but current change breaks backward
* add static ggml_graph_compute_sugar()
* minor: update comments
* reusable buffers
* ggml : more consistent naming + metal fixes
* ggml : fix docs
* tests : disable grad / opt + minor naming changes
* ggml : add ggml_graph_compute_with_ctx()
- backwards compatible API
- deduplicates a lot of copy-paste
* ci : enable test-grad0
* examples : factor out plan allocation into a helper function
* llama : factor out plan stuff into a helper function
* ci : fix env
* llama : fix duplicate symbols + refactor example benchmark
* ggml : remove obsolete assert + refactor n_tasks section
* ggml : fix indentation in switch
* llama : avoid unnecessary bool
* ggml : remove comments from source file and match order in header
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* use javascript generators as much cleaner API
Also add ways to access completion as promise and EventSource
* export llama_timings as struct and expose them in server
* update readme, update baked includes
* llama : uniform variable names + struct init
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Generalize quantize_fns for simpler FP16 handling
* Remove call to ggml_cuda_mul_mat_get_wsize
* ci : disable FMA for mac os actions
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* convert checks in llama_load_session_file to throw and handle them
* make llama_load_session_file_internal static
* address feedbacks to avoid using exceptions
* Remove multiple shards
* Remove multiple file loaders
* Remove llama_load_tensor_shard class
* Simplify load logic
* Remove dead code guess_n_parts function
* Remove vocab_only from constructor of llama_model_loader
* Remove alignment_prevents_mmap which is not more needed.
* Remove useless check
* add interface for float input
* fixed inpL shape and type
* add examples of input floats
* add test example for embd input
* fixed sampling
* add free for context
* fixed add end condition for generating
* add examples for llava.py
* add READMD for llava.py
* add READMD for llava.py
* add example of PandaGPT
* refactor the interface and fixed the styles
* add cmake build for embd-input
* add cmake build for embd-input
* Add MiniGPT-4 example
* change the order of the args of llama_eval_internal
* fix ci error
* detect NUMA systems and pin work threads to nodes (linux)
* disable mmap prefetch/readahead for NUMA systems
* avoid sending finalize op to thread pool if it does nothing
* silence robot
* fix args
* make --numa a param
* recommendation that n_nodes evenly divide n_threads did not warrant such aggressive enforcement
* lower synchronization overhead
* statically allocate
* move numa state to g_state
* add description for --numa
* ggml : minor style changes
* ggml : minor style + try fix sanitizer build
* llama : allow to initialize backend with NUMA support
* llama : avoid ggml include in llama-util.h
* ggml : style / formatting
* ggml : fix handling of ops with n_threads > n_tasks > 1
* server : utilize numa parameter
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* k_quants: WIP super-blocks with 64 weights
* k_quants: WIP super-blocks with 64 weights
Q6_K scalar and AVX2 works
* k_quants: WIP super-blocks with 64 weights
Q4_K scalar and AVX2 works
* k_quants: WIP super-blocks with 64 weights
Q2_K scalar and AVX2 works. Q2_K is way too slow (it is actually slower
than the scalar implementation)
* k_quants: WIP super-blocks with 64 weights
Q3_K scalar and AVX2 works.
* k_quants: WIP super-blocks with 64 weights
Q5_K scalar and AVX2 works, and with that all
k_quants are done on AVX2 and scalar
* k_quants: WIP super-blocks with 64 weights
Q6_K working on CUDA. Cannot make it run quite as gast as
with super-blocks with 256 weigths: 8% slower on 4080,
20% slower on the 1660 (but there we fit 1 less layer on the
GPU because pf the larger model size), so some fraction of
these 20% is due to that,
* k_quants: WIP super-blocks with 64 weights
Q4_K working on CUDA. ~10% slower on GTX-1660,
16% slower on 4080.
* k_quants: WIP super-blocks with 64 weights
Q2_K working on CUDA. ~3% slower on GTX-1660,
10% slower on 4080.
* k_quants: WIP super-blocks with 64 weights
Q3_K working on CUDA.
* k_quants: WIP super-blocks with 64 weights
Q5_K working on CUDA, and with this CUDA is done.
* k_quants: WIP super-blocks with 64 weights
Q6_K working on ARM_NEON
* k_quants: WIP super-blocks with 64 weights
Q4_K working on ARM_NEON, but quite a bit slower than 256 weights
* k_quants: WIP super-blocks with 64 weights
Q2_K working on ARM_NEON, but quite a bit slower than 256 weights
* k_quants: WIP super-blocks with 64 weights
Q3_K working on ARM_NEON, but quite a bit slower than 256 weights.
* k_quants: WIP super-blocks with 64 weights
Q5_K working on ARM_NEON, but quite a bit slower than 256 weights.
With that, we have full support for ARM_NEON, although
performance is not quite there.
* k_quants: WIP super-blocks with 64 weights
Slightly more efficient Q3_K and Q5_K
* k_quants: WIP super-blocks with 64 weights
Another small improvement for Q3_K and Q5_K on ARM_NEON
* k_quants: WIP super-blocks with 64 weights
Yet another speedup for Q5_K on ARM_NEON.
We are now within 10% of the QK_K = 256 version.
* k_quants: WIP super-blocks with 64 weights
* We are able to pass preprocessor macros to the Metal
compiler
* Q6_K works and is actually slightly more efficient than
the QK_K = 256 version (25.2 ms vs 25.8 ms)
* k_quants: WIP super-blocks with 64 weights
Q4_K works on Metal and is actually slightly faster
than QK_K = 256 (21.95 ms vs 24.0 ms).
* k_quants: WIP super-blocks with 64 weights
Q2_K works on Metal and is very slightly faster
than QK_K = 256 (23.8 ms vs 24.2 ms).
* k_quants: WIP super-blocks with 64 weights
Q3_K works on Metal and is slightly faster
than QK_K = 256 (26.6 ms vs 28.3 ms).
* k_quants: WIP super-blocks with 64 weights
Q5_K works on Metal and is slightly faster
than QK_K = 256 (23.7 ms vs 26.3 ms).
* k_quants: call them _K, not _k, also on Metal
* k_quants: correctly define QK_K in llama.cpp
* Fixed bug in q4_K quantization added with the 64-block addition
* Simplify via lambda
* k_quants: swicth Q3_K to 4-bit scales when QK_K = 64
Otherwise there isn't much benefit from this
quantization type. There is some very slight loss
in accuracy, but we reduce size by ~7%.
E.g., for OpenLLaMA-3B, Q3_K_S perplexity is
8.6131 with 8-bit scales and 8.6352 with 4-bit,
while file size decreases from 1.53G to 1.44G.
* k_quants: switch Q4_K to 4-bit scales when QK_K = 64
Here the loss in accuracy is greater than for Q3_K,
but the Q4_K points still move further to the left on
the perplexity vs size curve.
* k_quants: forgot to add the Metal changes in last commit
* k_quants: change Q5_K to be type 0 when QK_K = 64
Still needs AVX2 implementation
* k_quants: AVX2 implementation for new 64-weight Q5_K
* k_quants: 10% faster ARM_NEON Q5_K dot product
* k_quants: fixed issue caused by merging with master
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Fix top-p sampling to match the standard definition (smallest set that has probability mass at least p, not largest set with probability mass less than p)
* top-p: correct gt to gte
* add test for correct top-p behavior
* llama : make model stateless and context stateful
* llama : minor cleanup
* llama : update internal API declaration
* Apply suggestions from code review
fix style
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Missing model memory release
* Fix style
* Add deprecated warning for public API function llama_init_from_file
* Update public API use cases: move away from deprecated llama_init_from_file
* Deprecate public API function llama_apply_lora_from_file
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fixed issue: memory is not guaranteed to be aligned properly during ggml_init call from loading saved sessions
* - removed commented out old code from fix
- updated another instance of same issue below original
* Only use Q6_K for output weights if tensor size is multiple of 256
* Fixed copy/paste mistake
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Convert vector to f16 for dmmv
* compile option
* Added compilation option description to README
* Changed cmake CUDA_ARCHITECTURES from "OFF" to "native"
* Fix examples/metal
* k-quants: prevent usage when tensor size is not divisible by 256
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* metal : handle buffers larger than device's maxBufferLength
* metal : print more verbose device info + handle errors
* metal : fix prints for overlapping views
* metal : minimize view overlap to try to utilize device memory better