Commit Graph

68 Commits

Author SHA1 Message Date
Iwan Kawrakow
dead8f4b5b Fix misaligned memory access in Q4_1 kernel 2023-07-28 17:27:01 +03:00
Iwan Kawrakow
72af25998c Fix misaligned memory access in Q4_1 kernel 2023-07-28 17:13:22 +03:00
Georgi Gerganov
a4d1eb72c6 ggml : add q4_1 normalized quants 2023-07-28 15:20:34 +03:00
Georgi Gerganov
675425563c ggml : poc for normalizing weights for better quantization 2023-07-28 10:44:38 +03:00
Kawrakow
129d844c87
Fix Q4_K and Q5_K for QK_K = 64 on CUDA (#2359)
* Fix Q4_K and Q5_K for QK_K = 64

* Very slightly better Q5_K bit fiddling

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-07-25 13:48:04 +03:00
slaren
41c674161f
make rms_norm_eps a parameter (#2374)
* make rms_norm_eps a parameter

* add rms_norm_eps to command line

* fix baby llama, test-grad0

* use scientific notation for eps param in the help

ggml-ci
2023-07-24 17:57:12 +02:00
Georgi Gerganov
5b2b2dc6ae
ggml : sync (unary ops refactor, static-correctness) (#2370)
* ggml : sync (unary ops, tests)

ggml-ci

* tests : remove unnecessary funcs
2023-07-24 14:46:21 +03:00
Kawrakow
2f9cf974a0
Some more Q4_K and Q5_K speedup on CUDA (#2346)
* Faster Q5_K on CUDA

* Small Q5_K improvement on older GPUs

* Spped up Q4_K on CUDA

GTX1660: 29.5 ms/t -> 25.6 ms/t
RTX4080: 8.40 ms/t -> 8.25 ms/t

* Spped up Q4_K on CUDA

GTX1660: 36.7 ms/t -> 35.6 ms/t
RTX4080:  9.8 ms/t ->  9.5 ms/t

* Address PR comments

* Add some comments to satisfy PR reviewer

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-07-24 00:19:47 +03:00
slaren
95a6c595e7
ggml: move op parameters from tensors to ggml_tensor::op_params (#2333)
* ggml: move op parameters from tensors to ggml_tensor::op_params

* alibi: use memcpy for float params

* remove `src[1] = NULL` in ops
2023-07-23 14:36:02 +02:00
Georgi Gerganov
e76d630df1
llama : grouped-query attention + LLaMAv2 70B support (#2276)
* CUDA: GQA implementation

* llama : support for GQA and LLaMAv2 70B

ggml-ci

* py : fix hparams parsing (if-else blocks)

ggml-ci

* py : oh boy ..

ggml-ci

* help : fix gqa value for 70B

ggml-ci

---------

Co-authored-by: JohannesGaessler <johannesg@5d6.de>
2023-07-23 15:09:47 +03:00
Kawrakow
d2a43664f9
Speed up Q4_K (#2322)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-07-23 08:49:20 +03:00
Johannes Gäßler
b9b7d94fc1
CUDA: Fixed 7b q3_K_S with mul_mat_vec_q (#2313) 2023-07-22 21:27:34 +02:00
Kawrakow
d924522a46
Custom RoPE + bettter memory management for CUDA (#2295)
* Custom RoPE + bettter memory management for CUDA

* Adjusted look ahead in ggml_cuda_pool_malloc to 5%

This is sufficient it seems.
We end up using about 200 MB less VRAM that way when running
the 13B model with context 8192.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-07-21 17:27:51 +03:00
Georgi Gerganov
ae178ab46b
llama : make tensor_split ptr instead of array (#2272) 2023-07-21 13:10:51 +03:00
Jiahao Li
7568d1a2b2
Support dup & cont ops on CUDA (#2242) 2023-07-17 20:39:29 +03:00
Bach Le
7cdd30bf1f
cuda : allocate all temporary ggml_tensor_extra_gpu from a fixed-size buffer (#2220) 2023-07-14 22:00:58 +03:00
Jiahao Li
206e01de11
cuda : support broadcast add & mul (#2192)
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-14 21:38:24 +03:00
Johannes Gäßler
4304bd3cde
CUDA: mul_mat_vec_q kernels for k-quants (#2203) 2023-07-14 19:44:08 +02:00
Georgi Gerganov
697966680b
ggml : sync (ggml_conv_2d, fix mul_mat bug, CUDA GLM rope) 2023-07-14 16:36:41 +03:00
Howard Su
ff5d58faec
Fix compile error on Windows CUDA (#2207) 2023-07-13 21:58:09 +08:00
Georgi Gerganov
680e6f9177 cuda : add gelu support 2023-07-12 20:32:15 +03:00
Johannes Gäßler
2b5eb72e10
Fixed __dp4a compute capability: 6.0 -> 6.1 (#2189) 2023-07-12 10:38:52 +02:00
Georgi Gerganov
f7d278faf3
ggml : revert CUDA broadcast changes from #2183 (#2191) 2023-07-12 10:54:19 +03:00
Georgi Gerganov
20d7740a9b
ggml : sync (abort callback, mul / add broadcast, fix alibi) (#2183) 2023-07-11 22:53:34 +03:00
Spencer Sutton
5bf2a27718
ggml : remove src0 and src1 from ggml_tensor and rename opt to src (#2178)
* Add ggml changes

* Update train-text-from-scratch for change

* mpi : adapt to new ggml_tensor->src

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-11 19:31:10 +03:00
Johannes Gäßler
64639555ff
Fixed OpenLLaMA 3b CUDA mul_mat_vec_q (#2144) 2023-07-08 20:01:44 +02:00
Johannes Gäßler
061f5f8d21
CUDA: add __restrict__ to mul mat vec kernels (#2140) 2023-07-08 00:25:15 +02:00
Johannes Gäßler
924dd22fd3
Quantized dot products for CUDA mul mat vec (#2067) 2023-07-05 14:19:42 +02:00
Howard Su
cc45a7feb8
Fix crash of test-tokenizer-0 under Debug build (#2064)
* Fix crash of test-tokenizer-0 under Debug build

* Change per comment
2023-07-03 20:43:55 +02:00
Johannes Gäßler
0bc2cdfc87
Better CUDA synchronization logic (#2057) 2023-07-01 21:49:44 +02:00
Salvador E. Tropea
5b351e94d0
cuda : remove nchannels_x argument from mul_mat_vec_nc_f16_f32 (#2028)
- Not used
2023-06-28 20:27:31 +03:00
Salvador E. Tropea
6432aabb6d
cuda : fix missing const qualifier in casts (#2027) 2023-06-28 20:26:26 +03:00
Johannes Gäßler
7f9753fa12
CUDA GPU acceleration for LoRAs + f16 models (#1970) 2023-06-28 18:35:54 +02:00
Kawrakow
6769e944c7
k-quants : support for super-block size of 64 (#2001)
* k_quants: WIP super-blocks with 64 weights

* k_quants: WIP super-blocks with 64 weights

Q6_K scalar and AVX2 works

* k_quants: WIP super-blocks with 64 weights

Q4_K scalar and AVX2 works

* k_quants: WIP super-blocks with 64 weights

Q2_K scalar and AVX2 works. Q2_K is way too slow (it is actually slower
than the scalar implementation)

* k_quants: WIP super-blocks with 64 weights

Q3_K scalar and AVX2 works.

* k_quants: WIP super-blocks with 64 weights

Q5_K scalar and AVX2 works, and with that all
k_quants are done on AVX2 and scalar

* k_quants: WIP super-blocks with 64 weights

Q6_K working on CUDA. Cannot make it run quite as gast as
with super-blocks with 256 weigths: 8% slower on 4080,
20% slower on the 1660 (but there we fit 1 less layer on the
GPU because pf the larger model size), so some fraction of
these 20% is due to that,

* k_quants: WIP super-blocks with 64 weights

Q4_K working on CUDA. ~10% slower on GTX-1660,
16% slower on 4080.

* k_quants: WIP super-blocks with 64 weights

Q2_K working on CUDA. ~3% slower on GTX-1660,
10% slower on 4080.

* k_quants: WIP super-blocks with 64 weights

Q3_K working on CUDA.

* k_quants: WIP super-blocks with 64 weights

Q5_K working on CUDA, and with this CUDA is done.

* k_quants: WIP super-blocks with 64 weights

Q6_K working on ARM_NEON

* k_quants: WIP super-blocks with 64 weights

Q4_K working on ARM_NEON, but quite a bit slower than 256 weights

* k_quants: WIP super-blocks with 64 weights

Q2_K working on ARM_NEON, but quite a bit slower than 256 weights

* k_quants: WIP super-blocks with 64 weights

Q3_K working on ARM_NEON, but quite a bit slower than 256 weights.

* k_quants: WIP super-blocks with 64 weights

Q5_K working on ARM_NEON, but quite a bit slower than 256 weights.

With that, we have full support for ARM_NEON, although
performance is not quite there.

* k_quants: WIP super-blocks with 64 weights

Slightly more efficient Q3_K and Q5_K

* k_quants: WIP super-blocks with 64 weights

Another small improvement for Q3_K and Q5_K on ARM_NEON

* k_quants: WIP super-blocks with 64 weights

Yet another speedup for Q5_K on ARM_NEON.
We are now within 10% of the QK_K = 256 version.

* k_quants: WIP super-blocks with 64 weights

* We are able to pass preprocessor macros to the Metal
  compiler
* Q6_K works and is actually slightly more efficient than
  the QK_K = 256 version (25.2 ms vs 25.8 ms)

* k_quants: WIP super-blocks with 64 weights

Q4_K works on Metal and is actually slightly faster
than QK_K = 256 (21.95 ms vs 24.0 ms).

* k_quants: WIP super-blocks with 64 weights

Q2_K works on Metal and is very slightly faster
than QK_K = 256 (23.8 ms vs 24.2 ms).

* k_quants: WIP super-blocks with 64 weights

Q3_K works on Metal and is slightly faster
than QK_K = 256 (26.6 ms vs 28.3 ms).

* k_quants: WIP super-blocks with 64 weights

Q5_K works on Metal and is slightly faster
than QK_K = 256 (23.7 ms vs 26.3 ms).

* k_quants: call them _K, not _k, also on Metal

* k_quants: correctly define QK_K in llama.cpp

* Fixed bug in q4_K quantization added with the 64-block addition

* Simplify via lambda

* k_quants: swicth Q3_K to 4-bit scales when QK_K = 64

Otherwise there isn't much benefit from this
quantization type. There is some very slight loss
in accuracy, but we reduce size by ~7%.
E.g., for OpenLLaMA-3B, Q3_K_S perplexity is
8.6131 with 8-bit scales and 8.6352 with 4-bit,
while file size decreases from 1.53G to 1.44G.

* k_quants: switch Q4_K to 4-bit scales when QK_K = 64

 Here the loss in accuracy is greater than for Q3_K,
 but the Q4_K points still move further to the left on
 the perplexity vs size curve.

* k_quants: forgot to add the Metal changes in last commit

* k_quants: change Q5_K to be type 0 when QK_K = 64

Still needs AVX2 implementation

* k_quants: AVX2 implementation for new 64-weight Q5_K

* k_quants: 10% faster ARM_NEON Q5_K dot product

* k_quants: fixed issue caused by merging with master

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-26 19:43:07 +03:00
Howard Su
cbebf61ca7
Fix assert when free invalid cuda pointer (#2005)
Fix assert via initializing extra structure always.
CUDA error 1 at C:\GPT\llama.cpp\ggml-cuda.cu:2536: invalid argument
2023-06-26 23:15:47 +08:00
Robyn
5ec8dd5a3c
#1869 Fix null reference errors when training from scratch with CUDA (#1907)
* #1869 Fix null reference errors when training from scratch with CUDA build

Calling ggml_compute_forward when node->src0 was null was causing train-text-from-scratch.exe to terminate unexpectedly.

* ggml : do not dereference src0 if NULL

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-24 20:10:29 +02:00
Kawrakow
ca7c3f4da5
cuda : faster k-quants on older GPUs (#1930)
* k_quants: hopefully much faster Q4_K on older GPUs

On the GTX-1660 that I have available to represent
"old GPUs", token prediction drops from 65.5 ms/tok
to 41.5 ms/tok!

* k_quants: hopefully much faster Q3_K on older GPUs

On the GTX-1660 that I have available to represent
"old GPUs", token prediction drops from 60.3 ms/tok
to 41.0 ms/tok!

* k_quants: faster Q2_K on older GPUs

It looks like I didn't need to change anything
compared to what we already had, so this is just
adding clarifying comments. But I now measure
36.3 ms/tok on the GTX-1660, instead fo the
47.2 ms/tok that I have written in the faster
k-quants PR.

* k_quants: faster Q5_K on older GPUs

68.5 ms/tok -> 62.0 ms/tok on GTX-1660.
For some reason the same access pattern that leads
to such resounding success for Q2_K to Q4_K did not
work at all for Q5_K.

It is also more difficult to measure because for Q5_K_S
we only have 32 layers on the GTX-1660, so output, tok embeddings
and kv cache are done on the CPU.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-19 18:14:09 +03:00
Johannes Gäßler
16b9cd1939
Convert vector to f16 for dequantize mul mat vec (#1913)
* Convert vector to f16 for dmmv

* compile option

* Added compilation option description to README

* Changed cmake CUDA_ARCHITECTURES from "OFF" to "native"
2023-06-19 10:23:56 +02:00
Johannes Gäßler
2c9380dd2f
Only one CUDA stream per device for async compute (#1898) 2023-06-17 19:15:02 +02:00
Howard Su
3d59ec5935
ggml : fix warnings under MSVC (#1908) 2023-06-17 18:46:15 +03:00
Kawrakow
3d01122610
CUDA : faster k-quant dot kernels (#1862)
* cuda : faster k-quant dot kernels

* Imrove Q2_K dot kernel on older GPUs

We now have a K_QUANTS_PER_ITERATION macro, which should be
set to 1 on older and to 2 on newer GPUs.
With this, we preserve the performance of the original
PR on RTX-4080, and are faster compared to master on
GTX-1660.

* Imrove Q6_K dot kernel on older GPUs

Using the same K_QUANTS_PER_ITERATION macro as last commit,
we preserve performance on RTX-4080 and speed up
Q6_K on a GTX-1660.

* Add LLAMA_CUDA_KQUANTS_ITER to CMakeLists.txt and Makefile

Allowed values are 1 or 2. 2 gives the best performance on
modern GPUs and is set as default. On older GPUs 1 may work
better.

* PR comments

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-16 20:08:44 +03:00
Johannes Gäßler
a09f9195be
Fixed CUDA runtime version check (#1879) 2023-06-15 21:49:08 +02:00
Howard Su
64cc19b4fe
Fix the validation of main device (#1872) 2023-06-15 19:29:59 +02:00
Johannes Gäßler
254a7a7a5f
CUDA full GPU acceleration, KV cache in VRAM (#1827)
* Fixed CUDA RoPE

* ggml_cuda_mul_mat_vec_p021

* ggml_cuda_scale

* ggml_cuda_diag_mask_inf

* ggml_is_permuted

* ggml_cuda_cpy

* flatten rows for ggml_cuda_op

* Added a --low-vram option

* Fixed Windows performance

* Fixed LLAMA_CUDA_DMMV_Y > 1 for WizardLM
2023-06-14 19:47:19 +02:00
Howard Su
58970a4c39
Leverage mmap for offloading tensors to GPU (#1597)
* Rebase to latest

* Show progress

* Add assert to make sure we only allocate temp buffer for non-CPU backend tensor

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2023-06-12 14:44:16 +02:00
Kyle Liang
12b063f0ec
Fixed WSL cuda's OOM error (#1594)
* In the function , add the cuda error bypass.

* remove excessive codes and prints

---------

Co-authored-by: liang <liangmanlai@126.com>
2023-06-11 15:20:52 +02:00
Johannes Gäßler
ae9663f188
Windows nvcc workaround (#1753)
Fix gibberish output on Windows when using CUDA
2023-06-09 13:58:15 +02:00
Georgi Gerganov
5c64a0952e
k-quants : allow to optionally disable at compile time (#1734)
* k-quants : put behind optional compile flag LLAMA_K_QUANTS

* build : enable k-quants by default
2023-06-07 10:59:52 +03:00
Johannes Gäßler
17366df842
Multi GPU support, CUDA refactor, CUDA scratch buffer (#1703)
* CUDA multi GPU + scratch

ggml_cuda_compute_forward

Tensor parallelism

ggml_cuda_add

ggml_cuda_rms_norm

ggml_cuda_silu

CUDA scratch buffer

--main-gpu CLI option
2023-06-06 21:33:23 +02:00
Kawrakow
99009e72f8
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684)
* Starting to add k-quantization to ggml

I think it is better to have quantization separate from
ggml. For now just adding the k-quants there, but it would be
better to also factor out the existing ggml quantizations.

* Adding Q3_K and Q8_K (de)-quantization

* Q3_K now working on CUDA and AVX2/scalar

CUDA is not ideal - ~50% slower than Q4_0 for
single token prediction, about the same in batch
mode (perplexity). CPU single token is ~55 ms
(on Ryzen 7950X).

* Some improvement for Q3_K on CUDA

It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0.

* Some more CUDA optimizations for Q3_K

Single token is now 20.5 ms/token (~20% slower than Q4_0).
Perplexity is on par with Q4_0.

* Adding Q4_K - scalar, AVX2, CUDA

Performance is the same or perhaps very slightly better than Q4_0 on the CPU.
On the GPU, single token prediction is ~10% better than Q4_0,
batch mode (perplexity is about the same).

* Adding Q6_K - scalar, AVX2, CUDA

Performance is ~40% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 6-bit model is ~44% larger than the 4-bit.
On the GPU, single token prediction is ~6% lower than Q4_0,
batch mode (perplexity) is even closer (but still slower).

* Adding Q5_K - scalar, AVX2, CUDA

Performance is ~20% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 5-bit model is ~22% larger than the 4-bit.
On the GPU, single token prediction is about the same as Q4_0
for both, single token and batch prediction.

* Per convention, all QX_K quantizations use Q5_K for output.weight

* Adding quantization mixes

* Quantization mixes: didn't quite get what I wanted in the last commit

* Q4_K dot product for ARM_NEON

* Q6_K dot product for ARM_NEON

* Q5_K dot product for ARM_NEON

* Adding Q3_K dot for ARM_NEON

It is 22% slower than Q4_K, despite the smaller model size.
On x86_64, where we are memory bound, the Q3_K model is
quite a bit faster than Q4_K.

* A very slightly faster ARM_NEON Q3_K dot

* Adding Q2_K - just CUDA for now

Token prediction is pretty good - about 15.5 ms on a RTX 4080.
Perplexity is about the same as Q4_K.

* Adding scalar and AVX2 Q2_K dot

* Adding ARM_NEON Q2_K dot

About the same performance as Q4_K.

* A slightly faster ARM_NEON Q2_K dot

Single token prediction is now ~36 ms on M2 Max.
The code is much simpler too.

* Fixed bug in Q2_K CUDA dot product kernel

Stranegly enough, for the few prompts I tried with the 7B model
the responses looked perfectly reasonable. Only realized something
is not quite right when I tried the larger models and started getting
nonse back.

In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X
box iusing CUDA and model fully loaded on the GPU are
  ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B.
The max number of layers that fit in VRAM for The 65B is 32.
With that, we get ~330 ms per token, which is not that much faster
than just running on the CPU (~470 ms per token).

* Don't print zeros/NaNs when no count histogram has been collected

* A 10% faster CUDA vector dot kernel for Q3_K

Q3_K is now running at ~18.5 ms / token on CUDA,
so the gap to Q4_0 is only 10%.
It seems memory acccess pattern is more important for
performance than the amount of computation the kernel
does.

* A slightly daster Q4_K AVX2 dot product

For perplexity, where we are less memory bound, time per
pass drops by ~5%. Barely measurable difference for single
token prediction.

* A slightly faster ARM_NEON A4_K dot product

* Minor

* Fix quantization error test

We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit
quantization variants.

* Fix docker build

I have been sloppy with vector reinterpret casts on ARM_NEON.
It seems clang is very forgiving in that regard.

* Added forgotten ggml.o dependence on k_quants.h to the Makefile

* Had unintentionally committed the Makefile with -Ofast enabled

* ggml : rename k_quants -> ggml-quants-k, use lowercase in code

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 22:56:18 +03:00