2024-03-07 10:41:53 +01:00
# include "utils.hpp"
2023-05-21 19:51:18 +02:00
# include "common.h"
json-schema-to-grammar improvements (+ added to server) (#5978)
* json: fix arrays (disallow `[,1]`)
* json: support tuple types (`[number, string]`)
* json: support additionalProperties (`{[k: string]: [string,number][]}`)
* json: support required / optional properties
* json: add support for pattern
* json: resolve $ref (and support https schema urls)
* json: fix $ref resolution
* join: support union types (mostly for nullable types I think)
* json: support allOf + nested anyOf
* json: support any (`{}` or `{type: object}`)
* json: fix merge
* json: temp fix for escapes
* json: spaces in output and unrestricted output spaces
* json: add typings
* json:fix typo
* Create ts-type-to-grammar.sh
* json: fix _format_literal (json.dumps already escapes quotes)
* json: merge lit sequences and handle negatives
{"type": "string", "pattern": "^({\"question\": \"[^\"]+\", \"response\": \"[^\"]+\"}\\n)+$"}
* json: handle pattern repetitions
* Update json-schema-to-grammar.mjs
* Create regex-to-grammar.py
* json: extract repeated regexp patterns to subrule
* Update json-schema-to-grammar.py
* Update json-schema-to-grammar.py
* Update json-schema-to-grammar.py
* json: handle schema from pydantic Optional fields
* Update json-schema-to-grammar.py
* Update json-schema-to-grammar.py
* Update ts-type-to-grammar.sh
* Update ts-type-to-grammar.sh
* json: simplify nullable fields handling
* json: accept duplicate identical rules
* json: revert space to 1 at most
* json: reuse regexp pattern subrules
* json: handle uuid string format
* json: fix literal escapes
* json: add --allow-fetch
* json: simplify range escapes
* json: support negative ranges in patterns
* Delete commit.txt
* json: custom regex parser, adds dot support & JS-portable
* json: rm trailing spaces
* Update json-schema-to-grammar.mjs
* json: updated server & chat `( cd examples/server && ./deps.sh )`
* json: port fixes from mjs to python
* Update ts-type-to-grammar.sh
* json: support prefixItems alongside array items
* json: add date format + fix uuid
* json: add date, time, date-time formats
* json: preserve order of props from TS defs
* json: port schema converter to C++, wire in ./server
* json: nits
* Update json-schema-to-grammar.cpp
* Update json-schema-to-grammar.cpp
* Update json-schema-to-grammar.cpp
* json: fix mjs implementation + align outputs
* Update json-schema-to-grammar.mjs.hpp
* json: test C++, JS & Python versions
* json: nits + regen deps
* json: cleanup test
* json: revert from c++17 to 11
* json: nit fixes
* json: dirty include for test
* json: fix zig build
* json: pass static command to std::system in tests (fixed temp files)
* json: fix top-level $refs
* json: don't use c++20 designated initializers
* nit
* json: basic support for reserved names `{number:{number:{root:number}}}`
* Revamp test cmake to allow args (WORKING_DIRECTORY needed for JSON test)
* json: re-ran server deps.sh
* json: simplify test
* json: support mix of additional props & required/optional
* json: add tests for some expected failures
* json: fix type=const in c++, add failure expectations for non-str const&enum
* json: test (& simplify output of) empty schema
* json: check parsing in test + fix value & string refs
* json: add server tests for OAI JSON response_format
* json: test/fix top-level anyOf
* json: improve grammar parsing failures
* json: test/fix additional props corner cases
* json: fix string patterns (was missing quotes)
* json: ws nit
* json: fix json handling in server when there's no response_format
* json: catch schema conversion errors in server
* json: don't complain about unknown format type in server if unset
* json: cleaner build of test
* json: create examples/json-schema-pydantic-example.py
* json: fix date pattern
* json: move json.hpp & json-schema-to-grammar.{cpp,h} to common
* json: indent 4 spaces
* json: fix naming of top-level c++ function (+ drop unused one)
* json: avoid using namespace std
* json: fix zig build
* Update server.feature
* json: iostream -> fprintf
* json: space before & refs for consistency
* json: nits
2024-03-21 12:50:43 +01:00
# include "json-schema-to-grammar.h"
2023-05-21 19:51:18 +02:00
# include "llama.h"
2023-10-22 21:53:08 +02:00
# include "grammar-parser.h"
2023-05-21 19:51:18 +02:00
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
# ifndef NDEBUG
// crash the server in debug mode, otherwise send an http 500 error
# define CPPHTTPLIB_NO_EXCEPTIONS 1
# endif
2023-12-17 15:54:37 +01:00
// increase max payload length to allow use of larger context size
# define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
# include "httplib.h"
2024-05-08 21:53:08 +02:00
// Change JSON_ASSERT from assert() to GGML_ASSERT:
# define JSON_ASSERT GGML_ASSERT
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
# include "json.hpp"
2023-07-04 16:05:27 +02:00
// auto generated files (update with ./deps.sh)
2024-06-01 21:31:48 +02:00
# include "colorthemes.css.hpp"
# include "style.css.hpp"
# include "theme-beeninorder.css.hpp"
# include "theme-ketivah.css.hpp"
# include "theme-mangotango.css.hpp"
# include "theme-playground.css.hpp"
# include "theme-polarnight.css.hpp"
# include "theme-snowstorm.css.hpp"
2023-07-04 16:05:27 +02:00
# include "index.html.hpp"
2024-06-01 21:31:48 +02:00
# include "index-new.html.hpp"
2023-07-04 16:05:27 +02:00
# include "index.js.hpp"
# include "completion.js.hpp"
2024-06-01 21:31:48 +02:00
# include "system-prompts.js.hpp"
# include "prompt-formats.js.hpp"
2023-08-15 00:14:14 +02:00
# include "json-schema-to-grammar.mjs.hpp"
2023-07-04 16:05:27 +02:00
2024-03-07 10:41:53 +01:00
# include <atomic>
2023-10-22 21:53:08 +02:00
# include <chrono>
2023-12-29 15:24:12 +01:00
# include <condition_variable>
2024-03-07 10:41:53 +01:00
# include <cstddef>
# include <set>
# include <mutex>
# include <thread>
2024-02-18 17:23:16 +01:00
# include <signal.h>
2024-03-09 10:57:09 +01:00
# include <memory>
2023-09-01 15:34:50 +02:00
2024-03-22 14:07:44 +01:00
using json = nlohmann : : ordered_json ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-01-26 13:42:20 +01:00
bool server_verbose = false ;
2024-02-25 13:50:32 +01:00
bool server_log_json = true ;
2023-07-02 23:38:44 +02:00
2024-02-29 21:42:11 +01:00
enum stop_type {
2024-03-07 10:41:53 +01:00
STOP_TYPE_FULL ,
STOP_TYPE_PARTIAL ,
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
} ;
2024-02-29 21:42:11 +01:00
enum slot_state {
2024-03-07 10:41:53 +01:00
SLOT_STATE_IDLE ,
SLOT_STATE_PROCESSING ,
2024-02-29 21:42:11 +01:00
} ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-02-29 21:42:11 +01:00
enum slot_command {
2024-03-07 10:41:53 +01:00
SLOT_COMMAND_NONE ,
SLOT_COMMAND_LOAD_PROMPT ,
SLOT_COMMAND_RELEASE ,
} ;
enum server_state {
SERVER_STATE_LOADING_MODEL , // Server is starting up, model not fully loaded yet
SERVER_STATE_READY , // Server is ready and model is loaded
SERVER_STATE_ERROR // An error occurred, load_model failed
} ;
enum server_task_type {
SERVER_TASK_TYPE_COMPLETION ,
SERVER_TASK_TYPE_CANCEL ,
SERVER_TASK_TYPE_NEXT_RESPONSE ,
2024-04-08 14:43:30 +02:00
SERVER_TASK_TYPE_METRICS ,
SERVER_TASK_TYPE_SLOT_SAVE ,
SERVER_TASK_TYPE_SLOT_RESTORE ,
SERVER_TASK_TYPE_SLOT_ERASE ,
2024-03-07 10:41:53 +01:00
} ;
struct server_task {
int id = - 1 ; // to be filled by server_queue
int id_multi = - 1 ;
int id_target = - 1 ;
server_task_type type ;
json data ;
bool infill = false ;
bool embedding = false ;
} ;
struct server_task_result {
int id = - 1 ;
int id_multi = - 1 ;
json data ;
bool stop ;
bool error ;
} ;
struct server_task_multi {
int id = - 1 ;
std : : set < int > subtasks_remaining ;
std : : vector < server_task_result > results ;
2024-02-29 21:42:11 +01:00
} ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-02-29 21:42:11 +01:00
struct slot_params {
bool stream = true ;
bool cache_prompt = false ; // remember the prompt to avoid reprocessing all prompt
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-02-29 21:42:11 +01:00
int32_t n_keep = 0 ; // number of tokens to keep from initial prompt
2024-03-26 09:47:43 +01:00
int32_t n_discard = 0 ; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
2024-02-29 21:42:11 +01:00
int32_t n_predict = - 1 ; // new tokens to predict
2023-07-02 23:38:44 +02:00
2024-02-29 21:42:11 +01:00
std : : vector < std : : string > antiprompt ;
2023-07-02 23:38:44 +02:00
2024-02-29 21:42:11 +01:00
json input_prefix ;
json input_suffix ;
} ;
struct server_slot {
2023-10-22 21:53:08 +02:00
int id ;
2024-03-07 10:41:53 +01:00
int id_task = - 1 ;
int id_multi = - 1 ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2023-10-22 21:53:08 +02:00
struct slot_params params ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-03-07 10:41:53 +01:00
slot_state state = SLOT_STATE_IDLE ;
slot_command command = SLOT_COMMAND_NONE ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2023-10-22 21:53:08 +02:00
// used to determine the slot that has been used the longest
int64_t t_last_used = - 1 ;
2023-10-20 20:07:23 +02:00
2023-10-22 21:53:08 +02:00
// generation props
int32_t n_ctx = 0 ; // context size per slot
int32_t n_past = 0 ;
int32_t n_decoded = 0 ;
int32_t n_remaining = - 1 ;
int32_t i_batch = - 1 ;
2024-03-13 18:54:21 +01:00
int32_t n_predict = - 1 ; // TODO: disambiguate from params.n_predict
2023-10-20 20:07:23 +02:00
2024-02-29 21:42:11 +01:00
int32_t n_prompt_tokens = 0 ;
int32_t n_prompt_tokens_processed = 0 ;
2023-10-22 21:53:08 +02:00
json prompt ;
2024-03-07 10:41:53 +01:00
// when a task is submitted, we first tokenize the prompt and store it here
std : : vector < llama_token > prompt_tokens ;
2023-10-22 21:53:08 +02:00
std : : string generated_text ;
std : : vector < llama_token > cache_tokens ;
std : : vector < completion_token_output > generated_token_probs ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-03-07 10:41:53 +01:00
bool infill = false ;
bool embedding = false ;
2023-10-22 21:53:08 +02:00
bool has_next_token = true ;
2024-03-07 10:41:53 +01:00
bool truncated = false ;
bool stopped_eos = false ;
bool stopped_word = false ;
bool stopped_limit = false ;
2023-10-22 21:53:08 +02:00
2023-11-25 10:29:06 +01:00
bool oaicompat = false ;
2024-03-07 10:41:53 +01:00
std : : string oaicompat_model ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
std : : string stopping_word ;
2023-10-22 21:53:08 +02:00
// sampling
2024-03-07 10:41:53 +01:00
llama_token sampled ;
2023-10-22 21:53:08 +02:00
struct llama_sampling_params sparams ;
2024-03-07 10:41:53 +01:00
llama_sampling_context * ctx_sampling = nullptr ;
json-schema-to-grammar improvements (+ added to server) (#5978)
* json: fix arrays (disallow `[,1]`)
* json: support tuple types (`[number, string]`)
* json: support additionalProperties (`{[k: string]: [string,number][]}`)
* json: support required / optional properties
* json: add support for pattern
* json: resolve $ref (and support https schema urls)
* json: fix $ref resolution
* join: support union types (mostly for nullable types I think)
* json: support allOf + nested anyOf
* json: support any (`{}` or `{type: object}`)
* json: fix merge
* json: temp fix for escapes
* json: spaces in output and unrestricted output spaces
* json: add typings
* json:fix typo
* Create ts-type-to-grammar.sh
* json: fix _format_literal (json.dumps already escapes quotes)
* json: merge lit sequences and handle negatives
{"type": "string", "pattern": "^({\"question\": \"[^\"]+\", \"response\": \"[^\"]+\"}\\n)+$"}
* json: handle pattern repetitions
* Update json-schema-to-grammar.mjs
* Create regex-to-grammar.py
* json: extract repeated regexp patterns to subrule
* Update json-schema-to-grammar.py
* Update json-schema-to-grammar.py
* Update json-schema-to-grammar.py
* json: handle schema from pydantic Optional fields
* Update json-schema-to-grammar.py
* Update json-schema-to-grammar.py
* Update ts-type-to-grammar.sh
* Update ts-type-to-grammar.sh
* json: simplify nullable fields handling
* json: accept duplicate identical rules
* json: revert space to 1 at most
* json: reuse regexp pattern subrules
* json: handle uuid string format
* json: fix literal escapes
* json: add --allow-fetch
* json: simplify range escapes
* json: support negative ranges in patterns
* Delete commit.txt
* json: custom regex parser, adds dot support & JS-portable
* json: rm trailing spaces
* Update json-schema-to-grammar.mjs
* json: updated server & chat `( cd examples/server && ./deps.sh )`
* json: port fixes from mjs to python
* Update ts-type-to-grammar.sh
* json: support prefixItems alongside array items
* json: add date format + fix uuid
* json: add date, time, date-time formats
* json: preserve order of props from TS defs
* json: port schema converter to C++, wire in ./server
* json: nits
* Update json-schema-to-grammar.cpp
* Update json-schema-to-grammar.cpp
* Update json-schema-to-grammar.cpp
* json: fix mjs implementation + align outputs
* Update json-schema-to-grammar.mjs.hpp
* json: test C++, JS & Python versions
* json: nits + regen deps
* json: cleanup test
* json: revert from c++17 to 11
* json: nit fixes
* json: dirty include for test
* json: fix zig build
* json: pass static command to std::system in tests (fixed temp files)
* json: fix top-level $refs
* json: don't use c++20 designated initializers
* nit
* json: basic support for reserved names `{number:{number:{root:number}}}`
* Revamp test cmake to allow args (WORKING_DIRECTORY needed for JSON test)
* json: re-ran server deps.sh
* json: simplify test
* json: support mix of additional props & required/optional
* json: add tests for some expected failures
* json: fix type=const in c++, add failure expectations for non-str const&enum
* json: test (& simplify output of) empty schema
* json: check parsing in test + fix value & string refs
* json: add server tests for OAI JSON response_format
* json: test/fix top-level anyOf
* json: improve grammar parsing failures
* json: test/fix additional props corner cases
* json: fix string patterns (was missing quotes)
* json: ws nit
* json: fix json handling in server when there's no response_format
* json: catch schema conversion errors in server
* json: don't complain about unknown format type in server if unset
* json: cleaner build of test
* json: create examples/json-schema-pydantic-example.py
* json: fix date pattern
* json: move json.hpp & json-schema-to-grammar.{cpp,h} to common
* json: indent 4 spaces
* json: fix naming of top-level c++ function (+ drop unused one)
* json: avoid using namespace std
* json: fix zig build
* Update server.feature
* json: iostream -> fprintf
* json: space before & refs for consistency
* json: nits
2024-03-21 12:50:43 +01:00
json json_schema ;
2023-10-22 21:53:08 +02:00
2024-01-27 14:38:05 +01:00
int32_t ga_i = 0 ; // group-attention state
2024-01-30 19:17:30 +01:00
int32_t ga_n = 1 ; // group-attention factor
2024-01-27 14:38:05 +01:00
int32_t ga_w = 512 ; // group-attention width
int32_t n_past_se = 0 ; // self-extend
2023-10-22 21:53:08 +02:00
// stats
2024-02-29 21:42:11 +01:00
size_t n_sent_text = 0 ; // number of sent text character
size_t n_sent_token_probs = 0 ;
2023-10-22 21:53:08 +02:00
int64_t t_start_process_prompt ;
2024-03-07 10:41:53 +01:00
int64_t t_start_generation ;
2023-10-22 21:53:08 +02:00
double t_prompt_processing ; // ms
double t_token_generation ; // ms
void reset ( ) {
2024-03-07 10:41:53 +01:00
n_prompt_tokens = 0 ;
generated_text = " " ;
truncated = false ;
stopped_eos = false ;
stopped_word = false ;
stopped_limit = false ;
stopping_word = " " ;
n_past = 0 ;
n_sent_text = 0 ;
n_sent_token_probs = 0 ;
infill = false ;
ga_i = 0 ;
n_past_se = 0 ;
2024-01-30 19:17:30 +01:00
2023-10-22 21:53:08 +02:00
generated_token_probs . clear ( ) ;
}
bool has_budget ( gpt_params & global_params ) {
2024-02-29 21:42:11 +01:00
if ( params . n_predict = = - 1 & & global_params . n_predict = = - 1 ) {
2024-01-07 07:45:26 +01:00
return true ; // limitless
}
2023-10-22 21:53:08 +02:00
n_remaining = - 1 ;
2024-01-07 07:45:26 +01:00
2024-02-29 21:42:11 +01:00
if ( params . n_predict ! = - 1 ) {
2023-10-22 21:53:08 +02:00
n_remaining = params . n_predict - n_decoded ;
2024-02-29 21:42:11 +01:00
} else if ( global_params . n_predict ! = - 1 ) {
2023-10-22 21:53:08 +02:00
n_remaining = global_params . n_predict - n_decoded ;
}
2024-01-07 07:45:26 +01:00
return n_remaining > 0 ; // no budget
2023-10-22 21:53:08 +02:00
}
bool available ( ) const {
2024-03-07 10:41:53 +01:00
return state = = SLOT_STATE_IDLE & & command = = SLOT_COMMAND_NONE ;
2023-10-22 21:53:08 +02:00
}
bool is_processing ( ) const {
2024-03-07 10:41:53 +01:00
return ( state = = SLOT_STATE_IDLE & & command = = SLOT_COMMAND_LOAD_PROMPT ) | | state = = SLOT_STATE_PROCESSING ;
2023-10-22 21:53:08 +02:00
}
2024-03-07 10:41:53 +01:00
void add_token_string ( const completion_token_output & token ) {
if ( command = = SLOT_COMMAND_RELEASE ) {
2023-10-22 21:53:08 +02:00
return ;
}
generated_token_probs . push_back ( token ) ;
}
void release ( ) {
2024-03-07 10:41:53 +01:00
if ( state = = SLOT_STATE_PROCESSING ) {
t_token_generation = ( ggml_time_us ( ) - t_start_generation ) / 1e3 ;
command = SLOT_COMMAND_RELEASE ;
2023-10-22 21:53:08 +02:00
}
}
2024-03-07 10:41:53 +01:00
json get_formated_timings ( ) const {
return json {
2024-02-29 21:42:11 +01:00
{ " prompt_n " , n_prompt_tokens_processed } ,
2023-10-22 21:53:08 +02:00
{ " prompt_ms " , t_prompt_processing } ,
2024-02-29 21:42:11 +01:00
{ " prompt_per_token_ms " , t_prompt_processing / n_prompt_tokens_processed } ,
{ " prompt_per_second " , 1e3 / t_prompt_processing * n_prompt_tokens_processed } ,
2023-10-22 21:53:08 +02:00
{ " predicted_n " , n_decoded } ,
{ " predicted_ms " , t_token_generation } ,
{ " predicted_per_token_ms " , t_token_generation / n_decoded } ,
{ " predicted_per_second " , 1e3 / t_token_generation * n_decoded } ,
} ;
}
2024-03-07 10:41:53 +01:00
size_t find_stopping_strings ( const std : : string & text , const size_t last_token_size , const stop_type type ) {
size_t stop_pos = std : : string : : npos ;
for ( const std : : string & word : params . antiprompt ) {
size_t pos ;
if ( type = = STOP_TYPE_FULL ) {
const size_t tmp = word . size ( ) + last_token_size ;
const size_t from_pos = text . size ( ) > tmp ? text . size ( ) - tmp : 0 ;
pos = text . find ( word , from_pos ) ;
} else {
pos = find_partial_stop_string ( word , text ) ;
}
if ( pos ! = std : : string : : npos & & ( stop_pos = = std : : string : : npos | | pos < stop_pos ) ) {
if ( type = = STOP_TYPE_FULL ) {
stopped_word = true ;
stopping_word = word ;
has_next_token = false ;
}
stop_pos = pos ;
}
}
return stop_pos ;
}
2023-11-25 10:29:06 +01:00
void print_timings ( ) const {
2024-03-07 10:41:53 +01:00
char buffer [ 512 ] ;
2024-02-29 21:42:11 +01:00
double t_token = t_prompt_processing / n_prompt_tokens_processed ;
double n_tokens_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed ;
2024-03-07 10:41:53 +01:00
snprintf ( buffer , 512 , " prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second) " ,
2024-02-29 21:42:11 +01:00
t_prompt_processing , n_prompt_tokens_processed ,
2024-02-25 13:50:32 +01:00
t_token , n_tokens_second ) ;
2024-03-07 10:41:53 +01:00
2024-02-25 13:50:32 +01:00
LOG_INFO ( buffer , {
2024-03-07 10:41:53 +01:00
{ " id_slot " , id } ,
{ " id_task " , id_task } ,
2024-02-29 21:42:11 +01:00
{ " t_prompt_processing " , t_prompt_processing } ,
{ " n_prompt_tokens_processed " , n_prompt_tokens_processed } ,
{ " t_token " , t_token } ,
{ " n_tokens_second " , n_tokens_second } ,
2024-02-25 13:50:32 +01:00
} ) ;
t_token = t_token_generation / n_decoded ;
n_tokens_second = 1e3 / t_token_generation * n_decoded ;
2024-03-07 10:41:53 +01:00
snprintf ( buffer , 512 , " generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second) " ,
2024-02-25 13:50:32 +01:00
t_token_generation , n_decoded ,
t_token , n_tokens_second ) ;
2024-03-07 10:41:53 +01:00
2024-02-25 13:50:32 +01:00
LOG_INFO ( buffer , {
2024-03-07 10:41:53 +01:00
{ " id_slot " , id } ,
{ " id_task " , id_task } ,
2024-02-25 13:50:32 +01:00
{ " t_token_generation " , t_token_generation } ,
{ " n_decoded " , n_decoded } ,
{ " t_token " , t_token } ,
{ " n_tokens_second " , n_tokens_second } ,
} ) ;
2024-03-07 10:41:53 +01:00
snprintf ( buffer , 512 , " total time = %10.2f ms " , t_prompt_processing + t_token_generation ) ;
2024-02-25 13:50:32 +01:00
LOG_INFO ( buffer , {
2024-03-07 10:41:53 +01:00
{ " id_slot " , id } ,
{ " id_task " , id_task } ,
2024-02-25 13:50:32 +01:00
{ " t_prompt_processing " , t_prompt_processing } ,
{ " t_token_generation " , t_token_generation } ,
{ " t_total " , t_prompt_processing + t_token_generation } ,
} ) ;
2023-07-04 16:05:27 +02:00
}
2023-10-22 21:53:08 +02:00
} ;
2024-02-29 21:42:11 +01:00
struct server_metrics {
2024-03-09 16:34:15 +01:00
int64_t t_start = 0 ;
2024-03-08 12:25:04 +01:00
2024-02-25 13:49:43 +01:00
uint64_t n_prompt_tokens_processed_total = 0 ;
2024-03-08 12:25:04 +01:00
uint64_t t_prompt_processing_total = 0 ;
2024-02-25 13:49:43 +01:00
uint64_t n_tokens_predicted_total = 0 ;
2024-03-08 12:25:04 +01:00
uint64_t t_tokens_generation_total = 0 ;
2024-02-25 13:49:43 +01:00
uint64_t n_prompt_tokens_processed = 0 ;
uint64_t t_prompt_processing = 0 ;
2024-03-07 10:41:53 +01:00
uint64_t n_tokens_predicted = 0 ;
uint64_t t_tokens_generation = 0 ;
2024-02-25 13:49:43 +01:00
2024-03-09 16:34:15 +01:00
void init ( ) {
t_start = ggml_time_us ( ) ;
}
void on_prompt_eval ( const server_slot & slot ) {
2024-02-29 21:42:11 +01:00
n_prompt_tokens_processed_total + = slot . n_prompt_tokens_processed ;
n_prompt_tokens_processed + = slot . n_prompt_tokens_processed ;
t_prompt_processing + = slot . t_prompt_processing ;
2024-03-08 12:25:04 +01:00
t_prompt_processing_total + = slot . t_prompt_processing ;
2024-02-25 13:49:43 +01:00
}
2024-03-09 16:34:15 +01:00
void on_prediction ( const server_slot & slot ) {
2024-03-08 12:25:04 +01:00
n_tokens_predicted_total + = slot . n_decoded ;
n_tokens_predicted + = slot . n_decoded ;
t_tokens_generation + = slot . t_token_generation ;
t_tokens_generation_total + = slot . t_token_generation ;
2024-02-25 13:49:43 +01:00
}
void reset_bucket ( ) {
n_prompt_tokens_processed = 0 ;
t_prompt_processing = 0 ;
n_tokens_predicted = 0 ;
t_tokens_generation = 0 ;
}
} ;
2024-03-07 10:41:53 +01:00
struct server_queue {
int id = 0 ;
bool running ;
// queues
std : : vector < server_task > queue_tasks ;
std : : vector < server_task > queue_tasks_deferred ;
std : : vector < server_task_multi > queue_multitasks ;
std : : mutex mutex_tasks ;
std : : condition_variable condition_tasks ;
// callback functions
std : : function < void ( server_task & ) > callback_new_task ;
std : : function < void ( server_task_multi & ) > callback_finish_multitask ;
2024-03-11 10:56:41 +01:00
std : : function < void ( void ) > callback_update_slots ;
2024-03-07 10:41:53 +01:00
// Add a new task to the end of the queue
int post ( server_task task ) {
std : : unique_lock < std : : mutex > lock ( mutex_tasks ) ;
if ( task . id = = - 1 ) {
task . id = id + + ;
LOG_VERBOSE ( " new task id " , { { " new_id " , task . id } } ) ;
}
queue_tasks . push_back ( std : : move ( task ) ) ;
condition_tasks . notify_one ( ) ;
return task . id ;
}
// Add a new task, but defer until one slot is available
void defer ( server_task task ) {
std : : unique_lock < std : : mutex > lock ( mutex_tasks ) ;
queue_tasks_deferred . push_back ( std : : move ( task ) ) ;
}
// Get the next id for creating anew task
int get_new_id ( ) {
std : : unique_lock < std : : mutex > lock ( mutex_tasks ) ;
int new_id = id + + ;
LOG_VERBOSE ( " new task id " , { { " new_id " , new_id } } ) ;
return new_id ;
}
// Register function to process a new task
void on_new_task ( std : : function < void ( server_task & ) > callback ) {
callback_new_task = std : : move ( callback ) ;
}
// Register function to process a multitask when it is finished
void on_finish_multitask ( std : : function < void ( server_task_multi & ) > callback ) {
callback_finish_multitask = std : : move ( callback ) ;
}
// Register the function to be called when all slots data is ready to be processed
2024-03-11 10:56:41 +01:00
void on_update_slots ( std : : function < void ( void ) > callback ) {
callback_update_slots = std : : move ( callback ) ;
2024-03-07 10:41:53 +01:00
}
// Call when the state of one slot is changed
void notify_slot_changed ( ) {
// move deferred tasks back to main loop
std : : unique_lock < std : : mutex > lock ( mutex_tasks ) ;
for ( auto & task : queue_tasks_deferred ) {
queue_tasks . push_back ( std : : move ( task ) ) ;
}
queue_tasks_deferred . clear ( ) ;
}
// end the start_loop routine
void terminate ( ) {
std : : unique_lock < std : : mutex > lock ( mutex_tasks ) ;
running = false ;
condition_tasks . notify_all ( ) ;
}
/**
* Main loop consists of these steps :
* - Wait until a new task arrives
* - Process the task ( i . e . maybe copy data into slot )
* - Check if multitask is finished
2024-03-11 10:56:41 +01:00
* - Update all slots
2024-03-07 10:41:53 +01:00
*/
void start_loop ( ) {
running = true ;
while ( true ) {
LOG_VERBOSE ( " new task may arrive " , { } ) ;
while ( true ) {
std : : unique_lock < std : : mutex > lock ( mutex_tasks ) ;
if ( queue_tasks . empty ( ) ) {
lock . unlock ( ) ;
break ;
}
server_task task = queue_tasks . front ( ) ;
queue_tasks . erase ( queue_tasks . begin ( ) ) ;
lock . unlock ( ) ;
LOG_VERBOSE ( " callback_new_task " , { { " id_task " , task . id } } ) ;
callback_new_task ( task ) ;
}
LOG_VERBOSE ( " update_multitasks " , { } ) ;
// check if we have any finished multitasks
auto queue_iterator = queue_multitasks . begin ( ) ;
while ( queue_iterator ! = queue_multitasks . end ( ) ) {
if ( queue_iterator - > subtasks_remaining . empty ( ) ) {
// all subtasks done == multitask is done
server_task_multi current_multitask = * queue_iterator ;
callback_finish_multitask ( current_multitask ) ;
// remove this multitask
queue_iterator = queue_multitasks . erase ( queue_iterator ) ;
} else {
+ + queue_iterator ;
}
}
// all tasks in the current loop is processed, slots data is now ready
2024-03-11 10:56:41 +01:00
LOG_VERBOSE ( " callback_update_slots " , { } ) ;
2024-03-07 10:41:53 +01:00
2024-03-11 10:56:41 +01:00
callback_update_slots ( ) ;
2024-03-07 10:41:53 +01:00
LOG_VERBOSE ( " wait for new task " , { } ) ;
{
std : : unique_lock < std : : mutex > lock ( mutex_tasks ) ;
if ( queue_tasks . empty ( ) ) {
if ( ! running ) {
LOG_VERBOSE ( " ending start_loop " , { } ) ;
return ;
}
condition_tasks . wait ( lock , [ & ] {
return ( ! queue_tasks . empty ( ) | | ! running ) ;
} ) ;
}
}
}
}
//
// functions to manage multitasks
//
// add a multitask by specifying the id of all subtask (subtask is a server_task)
void add_multitask ( int id_multi , std : : vector < int > & sub_ids ) {
std : : lock_guard < std : : mutex > lock ( mutex_tasks ) ;
server_task_multi multi ;
multi . id = id_multi ;
std : : copy ( sub_ids . begin ( ) , sub_ids . end ( ) , std : : inserter ( multi . subtasks_remaining , multi . subtasks_remaining . end ( ) ) ) ;
queue_multitasks . push_back ( multi ) ;
}
// updatethe remaining subtasks, while appending results to multitask
void update_multitask ( int id_multi , int id_sub , server_task_result & result ) {
std : : lock_guard < std : : mutex > lock ( mutex_tasks ) ;
for ( auto & multitask : queue_multitasks ) {
if ( multitask . id = = id_multi ) {
multitask . subtasks_remaining . erase ( id_sub ) ;
multitask . results . push_back ( result ) ;
}
}
}
} ;
struct server_response {
typedef std : : function < void ( int , int , server_task_result & ) > callback_multitask_t ;
callback_multitask_t callback_update_multitask ;
// for keeping track of all tasks waiting for the result
std : : set < int > waiting_task_ids ;
// the main result queue
std : : vector < server_task_result > queue_results ;
std : : mutex mutex_results ;
std : : condition_variable condition_results ;
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
// add the id_task to the list of tasks waiting for response
void add_waiting_task_id ( int id_task ) {
LOG_VERBOSE ( " waiting for task id " , { { " id_task " , id_task } } ) ;
std : : unique_lock < std : : mutex > lock ( mutex_results ) ;
waiting_task_ids . insert ( id_task ) ;
}
// when the request is finished, we can remove task associated with it
void remove_waiting_task_id ( int id_task ) {
LOG_VERBOSE ( " remove waiting for task id " , { { " id_task " , id_task } } ) ;
std : : unique_lock < std : : mutex > lock ( mutex_results ) ;
waiting_task_ids . erase ( id_task ) ;
}
// This function blocks the thread until there is a response for this id_task
server_task_result recv ( int id_task ) {
while ( true ) {
std : : unique_lock < std : : mutex > lock ( mutex_results ) ;
condition_results . wait ( lock , [ & ] {
return ! queue_results . empty ( ) ;
} ) ;
for ( int i = 0 ; i < ( int ) queue_results . size ( ) ; i + + ) {
if ( queue_results [ i ] . id = = id_task ) {
assert ( queue_results [ i ] . id_multi = = - 1 ) ;
server_task_result res = queue_results [ i ] ;
queue_results . erase ( queue_results . begin ( ) + i ) ;
return res ;
}
}
}
// should never reach here
}
// Register the function to update multitask
void on_multitask_update ( callback_multitask_t callback ) {
callback_update_multitask = std : : move ( callback ) ;
}
// Send a new result to a waiting id_task
void send ( server_task_result result ) {
LOG_VERBOSE ( " send new result " , { { " id_task " , result . id } } ) ;
std : : unique_lock < std : : mutex > lock ( mutex_results ) ;
for ( const auto & id_task : waiting_task_ids ) {
// LOG_TEE("waiting task id %i \n", id_task);
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
if ( result . id_multi = = id_task ) {
LOG_VERBOSE ( " callback_update_multitask " , { { " id_task " , id_task } } ) ;
callback_update_multitask ( id_task , result . id , result ) ;
continue ;
}
if ( result . id = = id_task ) {
LOG_VERBOSE ( " queue_results.push_back " , { { " id_task " , id_task } } ) ;
queue_results . push_back ( result ) ;
condition_results . notify_all ( ) ;
return ;
}
}
}
} ;
struct server_context {
llama_model * model = nullptr ;
llama_context * ctx = nullptr ;
2023-10-22 21:53:08 +02:00
gpt_params params ;
llama_batch batch ;
2024-03-07 10:41:53 +01:00
bool clean_kv_cache = true ;
bool add_bos_token = true ;
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
int32_t n_ctx ; // total context for all clients / slots
2023-10-22 21:53:08 +02:00
// system prompt
bool system_need_update = false ;
std : : string system_prompt ;
std : : vector < llama_token > system_tokens ;
// slots / clients
2024-02-29 21:42:11 +01:00
std : : vector < server_slot > slots ;
2024-02-05 09:10:22 +01:00
json default_generation_settings_for_props ;
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
server_queue queue_tasks ;
server_response queue_results ;
2023-07-04 16:05:27 +02:00
2024-02-29 21:42:11 +01:00
server_metrics metrics ;
2024-02-25 13:49:43 +01:00
2024-03-07 10:41:53 +01:00
~ server_context ( ) {
if ( ctx ) {
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
llama_free ( ctx ) ;
ctx = nullptr ;
2023-05-21 19:51:18 +02:00
}
2024-03-07 10:41:53 +01:00
if ( model ) {
2023-06-24 10:47:58 +02:00
llama_free_model ( model ) ;
model = nullptr ;
}
2024-05-11 10:13:02 +02:00
2024-05-14 16:11:24 +02:00
// Clear any sampling context
for ( server_slot & slot : slots ) {
if ( slot . ctx_sampling ! = nullptr ) {
llama_sampling_free ( slot . ctx_sampling ) ;
}
}
2024-05-11 10:13:02 +02:00
llama_batch_free ( batch ) ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
}
2024-03-07 10:41:53 +01:00
bool load_model ( const gpt_params & params_ ) {
2023-10-22 21:53:08 +02:00
params = params_ ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
llama : support Mamba Selective State Space Models (#5328)
* mamba : begin working on support for Mamba SSM
* mamba : begin figuring out how to (ab)use the kv cache for Mamba
* mamba : recurrent inference almost works, but incoherent
* mamba : recurrent inference WORKS!!!
* convert : optionally use d_conv and d_state from config.json for Mamba
* mamba : refactor recurrent conv, resulting in 20% perf increase
It's still slower than I'd like, but I did not really optimize `ggml_exp` yet.
I also refactored `ggml_exp` to work with tensors with more than 2 dimensions.
* ggml : parallelize ggml_exp
This results in 8% faster token generation for Mamba-130M.
* mamba : simplify the conv step with a self-overlapping view
Turns out the conv_state can be made smaller by one column.
Note that this breaks existing GGUFs of Mamba,
because the key_value_length field is tied to the conv_state size.
Convolution with a self-overlapping view is cool!
And it's much simpler than what I initially thought would be necessary
to make the convolution step work with more than 1 token at a time.
Next step is to make the SSM step work on batches of tokens too,
and thus I need to figure out a way to make a parallel selective scan
which will keep the ssm_state small and won't make it bigger
by a factor of (n_layer * batch_size).
* llama : fix Mamba KV self size wrongly displaying as f16 instead of f32
Relatedly, I also tried to see if other types than f32 worked for the states,
but they don't, because of the operators used.
It's probably better anyway to keep lots of precision there,
since the states are small anyway.
* mamba : fix self-overlapping view depth stride
* mamba : handle batches of more than 1 token
This means running Mamba no longer crashes when using the default settings!
And probably also slightly faster prompt processing.
Both batched and non-batched processing yield the same output.
Previously, the state was not cleared when starting a sequence.
Next step is to make the KV cache API work as expected for Mamba models.
* ggml: add ggml_ssm_scan to help with parallel selective scan
If the selective scan was implemented without a custom operator,
there would be waaay too many nodes in the graph. For example,
for Mamba-130M, with a batch size of 512 (the default),
a naive selective scan could add at least 24*512=12288 nodes,
which is more than LLAMA_MAX_NODES (8192),
and that's only for the smallest Mamba model.
So it's much cleaner with a custom operator.
Not sure about the name, though.
* ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation
This will help with performance on CPU if ggml_vec_mul_f32
and ggml_vec_add_f32 are ever optimized with SIMD.
* mamba : very basic quantization support
Mostly works, but there is currently no difference
between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same).
Most of the SSM-specific weights can be kept in f32 without affecting
the size that much, since they are relatively small.
(the linear projection weights are responsible for most of Mamba's size)
Too much quantization seems to make the state degrade quite fast, and
the model begins to output gibberish.
It seems to affect bigger models to a lesser extent than small models,
but I'm not sure by how much.
Experimentation will be needed to figure out which weights are more important
for the _M (and _L?) variants of k-quants for Mamba.
* convert : fix wrong name for layer norm weight of offical Mamba models
I was using Q-bert/Mamba-* models before, which have a slighlty different
naming scheme for the weights.
(they start with "model.layers" instead of "backbone.layers")
* mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator
This increases performance on CPU by around 30% for prompt processing,
and by around 20% for text generation.
However, it also makes the ggml_exp and ggml_soft_plus operators unused.
Whether or not they should be kept will be decided later.
* convert : for Mamba, also consider the "MambaLMHeadModel" arch name
It's the name of the class of the official implementation,
though they don't use it (yet) in the "architectures" field of config.json
* mamba : fix vocab size problems with official models
The perplexity was waaaay to high for models with a non-round vocab size.
Not sure why, but it needed to be fixed in the metadata.
Note that this breaks existing GGUF-converted Mamba models,
but **only if** the vocab size was not already rounded.
* ggml : remove ggml_exp and ggml_soft_plus
They did not exist anyway outside of this branch,
and since ggml_ssm_scan fused operations together, they are unused.
It's always possible to bring them back if needed.
* mamba : remove some useless comments
No code change.
* convert : fix flake8 linter errors
* mamba : apply suggestions from code review
* mamba : remove unecessary branch for row-wise ssm_state and C multiplication
It was previously done to avoid permuting when only one token is processed
at a time (like when generating text), but permuting is cheap,
and dynamically changing the compute graph is not future-proof.
* ggml : in ggml_ssm_scan, use more appropriate asserts
* ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32
* mamba : multiple sequences, but one at a time
This is a step towards making this Mamba implementation usable
with the server example (the way the system prompt is kept when clearing
the client slots will need to be changed before this can work, though).
The KV cache size for this kind of model is tied to the maximum number
of sequences kept at any single time.
For now, this number is obtained from n_parallel (plus one,
to have an extra sequence to dedicate to the system prompt),
but there might be a better way to do this which won't also
make the main example use 2 cells even if only 1 is really used.
(for this specific case, --parallel 0 helps)
Simultaneous sequence processing will probably require changes to
ggml_ssm_scan, and possibly a new operator for the conv step.
* mamba : support llama_kv_cache_seq_cp
This (mis)uses the logic around K shifts, because tokens in a state
can't be shifted anyway, and because inp_K_shift has the right shape and type.
Using ggml_get_rows is a nice way to do copies, but copy chains can't work.
Fortunately, copy chains don't really seem to be used in the examples.
Each KV cell is dedicated to the sequence ID corresponding to its own index.
* mamba : use a state mask
It's cleaner than the previous heuristic of
checking for the pos of the first token in the batch.
inp_KQ_mask could not be re-used for this, because it has the wrong shape
and because it seems more suited to the next step of
simultaneous sequence processing (helping with the problem of
remembering which token belongs to which sequence(s)/state(s)).
* llama : replace the usage of n_ctx with kv_self.size in many places
* mamba : use n_tokens directly instead of n_tok
* mamba : in comments, properly refer to KV cells instead of slots
* mamba : reduce memory usage of ggml_ssm_scan
From 290.37 MiB to 140.68 MiB of CPU compute buffer size
with Mamba 3B with a batch size of 512.
The result tensor of ggml_ssm_scan was previously a big part
of the CPU compute buffer size. To make it smaller,
it does not contain the intermediate ssm states anymore.
Both y and the last ssm state are combined in the result tensor,
because it seems only a single tensor can be returned by an operator
with the way the graph is built.
* mamba : simultaneous sequence processing
A batch can now contain tokens from multiple sequences.
This is necessary for at least the parallel example, the server example,
and the HellaSwag test in the perplexity example.
However, for this to be useful, uses of llama_kv_cache_seq_rm/cp
will need to be changed to work on whole sequences.
* ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba
This operator makes it possible to use and update the correct states
for each token of the batch in the same way as ggml_ssm_scan.
Other solutions which use existing operators would need loops which would
add too many nodes to the graph (at least the ones I thought of).
Using this operator further reduces the size of the CPU compute buffer
from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512.
And (at least on CPU), it's a bit faster than before.
Note that "ggml_ssm_conv" is probably not the most appropriate name,
and it could be changed if a better one is found.
* llama : add inp_s_seq as a new input tensor
The most convenient implementation to select the correct state (for Mamba)
for each token is to directly get the correct index from a tensor.
This is why inp_s_seq is storing int32_t and not floats.
The other, less convenient way to select the correct state would be
to have inp_KQ_mask contain 1.0f for each state used by a token
and 0.0f otherwise. This complicates quickly fetching the first used
state of a token, and is also less efficient because a whole row
of the mask would always need to be read for each token.
Using indexes makes it easy to stop searching when there are
no more sequences for a token, and the first sequence assigned
is always very quickly available (it's the first element of each row).
* mamba : support llama_kv_cache_seq_cp copy chains
* mamba : support shifting and dividing the kv cache pos
* mamba : make the server and parallel examples work with whole sequences
A seq_id is dedicated to the system prompt in both cases.
* llama : make llama_kv_cache_seq_rm return whether it succeeded or not
* mamba : dedicate an input tensor for state copy indices
This is cleaner and makes it easier to adapt when/if token positions
(and by extension, inp_K_shift) are no longer integers.
* mamba : adapt perplexity, batched, and batched-bench examples
* perplexity : limit the max number of sequences
This adapts to what the loaded model can provide.
* llama : add llama_n_max_seq to get the upper limit for seq_ids
Used by the perplexity example.
* batched : pass n_parallel to the model's context params
This should have been there already, but it wasn't.
* batched-bench : reserve sequences to support Mamba
* batched-bench : fix tokens being put in wrong sequences
Generation quality isn't what's measured in there anyway,
but at least using the correct sequences avoids using non-consecutive
token positions.
* mamba : stop abusing attention metadata
This breaks existing converted-to-GGUF Mamba models,
but will allow supporting mixed architectures like MambaFormer
without needing to break Mamba models.
This will also allow changing the size of Mamba's states
without having to reconvert models in the future.
(e.g. using something else than d_conv - 1 columns for the conv_states
will not require breaking existing converted Mamba models again)
* gguf-py : add new KV metadata key-value pairs for Mamba
* llama : add new metadata key-value pairs for Mamba
* llama : guard against divisions by zero when n_head is 0
* mamba : rename "unlimited" KV cache property to "recurrent"
* mamba : more correctly update the "used" field of the KV cache
* ggml : in ggml_ssm_scan, use a threshold for soft_plus
This is how the official Mamba implementation does it,
and it's also what torch.nn.Softplus does.
* convert : for Mamba, fallback to internal NeoX tokenizer
The resulting models are exactly the same
as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there.
* mamba : support state saving and restoring
* ggml : implicitly pass src tensors through dst for Mamba-related ops
* mamba : clarify some comments
* server : fix cache_tokens not getting correctly resized
Otherwise, when the "we have to evaluate at least 1 token" special case
was triggered, an extra token was kept in cache_tokens even if it was
removed from the KV cache.
For Mamba, this caused useless prompt reprocessing when the previous
request triggered the above case.
* convert-hf : support new metadata keys for Mamba
For the models available at
https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406
* mamba : rename metadata to be more similar to transformers library
This breaks existing converted-to-GGUF models,
but the metadata names are more "standard".
* mamba : support mamba-*-hf models
These models share their token_embd.weight with their output.weight
* mamba : add missing spaces
This is purely a formatting change.
* convert-hf : omit output.weight when identical with token_embd.weight
Only for Mamba for now, but it might be relevant for other models eventually.
Most Mamba models actually share these two tensors, albeit implicitly.
* readme : add Mamba to supported models, and add recent API changes
* mamba : move state_seq and state_mask views outside layer loop
A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 23:31:00 +01:00
// dedicate one sequence to the system prompt
params . n_parallel + = 1 ;
2023-06-24 10:47:58 +02:00
std : : tie ( model , ctx ) = llama_init_from_gpt_params ( params ) ;
llama : support Mamba Selective State Space Models (#5328)
* mamba : begin working on support for Mamba SSM
* mamba : begin figuring out how to (ab)use the kv cache for Mamba
* mamba : recurrent inference almost works, but incoherent
* mamba : recurrent inference WORKS!!!
* convert : optionally use d_conv and d_state from config.json for Mamba
* mamba : refactor recurrent conv, resulting in 20% perf increase
It's still slower than I'd like, but I did not really optimize `ggml_exp` yet.
I also refactored `ggml_exp` to work with tensors with more than 2 dimensions.
* ggml : parallelize ggml_exp
This results in 8% faster token generation for Mamba-130M.
* mamba : simplify the conv step with a self-overlapping view
Turns out the conv_state can be made smaller by one column.
Note that this breaks existing GGUFs of Mamba,
because the key_value_length field is tied to the conv_state size.
Convolution with a self-overlapping view is cool!
And it's much simpler than what I initially thought would be necessary
to make the convolution step work with more than 1 token at a time.
Next step is to make the SSM step work on batches of tokens too,
and thus I need to figure out a way to make a parallel selective scan
which will keep the ssm_state small and won't make it bigger
by a factor of (n_layer * batch_size).
* llama : fix Mamba KV self size wrongly displaying as f16 instead of f32
Relatedly, I also tried to see if other types than f32 worked for the states,
but they don't, because of the operators used.
It's probably better anyway to keep lots of precision there,
since the states are small anyway.
* mamba : fix self-overlapping view depth stride
* mamba : handle batches of more than 1 token
This means running Mamba no longer crashes when using the default settings!
And probably also slightly faster prompt processing.
Both batched and non-batched processing yield the same output.
Previously, the state was not cleared when starting a sequence.
Next step is to make the KV cache API work as expected for Mamba models.
* ggml: add ggml_ssm_scan to help with parallel selective scan
If the selective scan was implemented without a custom operator,
there would be waaay too many nodes in the graph. For example,
for Mamba-130M, with a batch size of 512 (the default),
a naive selective scan could add at least 24*512=12288 nodes,
which is more than LLAMA_MAX_NODES (8192),
and that's only for the smallest Mamba model.
So it's much cleaner with a custom operator.
Not sure about the name, though.
* ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation
This will help with performance on CPU if ggml_vec_mul_f32
and ggml_vec_add_f32 are ever optimized with SIMD.
* mamba : very basic quantization support
Mostly works, but there is currently no difference
between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same).
Most of the SSM-specific weights can be kept in f32 without affecting
the size that much, since they are relatively small.
(the linear projection weights are responsible for most of Mamba's size)
Too much quantization seems to make the state degrade quite fast, and
the model begins to output gibberish.
It seems to affect bigger models to a lesser extent than small models,
but I'm not sure by how much.
Experimentation will be needed to figure out which weights are more important
for the _M (and _L?) variants of k-quants for Mamba.
* convert : fix wrong name for layer norm weight of offical Mamba models
I was using Q-bert/Mamba-* models before, which have a slighlty different
naming scheme for the weights.
(they start with "model.layers" instead of "backbone.layers")
* mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator
This increases performance on CPU by around 30% for prompt processing,
and by around 20% for text generation.
However, it also makes the ggml_exp and ggml_soft_plus operators unused.
Whether or not they should be kept will be decided later.
* convert : for Mamba, also consider the "MambaLMHeadModel" arch name
It's the name of the class of the official implementation,
though they don't use it (yet) in the "architectures" field of config.json
* mamba : fix vocab size problems with official models
The perplexity was waaaay to high for models with a non-round vocab size.
Not sure why, but it needed to be fixed in the metadata.
Note that this breaks existing GGUF-converted Mamba models,
but **only if** the vocab size was not already rounded.
* ggml : remove ggml_exp and ggml_soft_plus
They did not exist anyway outside of this branch,
and since ggml_ssm_scan fused operations together, they are unused.
It's always possible to bring them back if needed.
* mamba : remove some useless comments
No code change.
* convert : fix flake8 linter errors
* mamba : apply suggestions from code review
* mamba : remove unecessary branch for row-wise ssm_state and C multiplication
It was previously done to avoid permuting when only one token is processed
at a time (like when generating text), but permuting is cheap,
and dynamically changing the compute graph is not future-proof.
* ggml : in ggml_ssm_scan, use more appropriate asserts
* ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32
* mamba : multiple sequences, but one at a time
This is a step towards making this Mamba implementation usable
with the server example (the way the system prompt is kept when clearing
the client slots will need to be changed before this can work, though).
The KV cache size for this kind of model is tied to the maximum number
of sequences kept at any single time.
For now, this number is obtained from n_parallel (plus one,
to have an extra sequence to dedicate to the system prompt),
but there might be a better way to do this which won't also
make the main example use 2 cells even if only 1 is really used.
(for this specific case, --parallel 0 helps)
Simultaneous sequence processing will probably require changes to
ggml_ssm_scan, and possibly a new operator for the conv step.
* mamba : support llama_kv_cache_seq_cp
This (mis)uses the logic around K shifts, because tokens in a state
can't be shifted anyway, and because inp_K_shift has the right shape and type.
Using ggml_get_rows is a nice way to do copies, but copy chains can't work.
Fortunately, copy chains don't really seem to be used in the examples.
Each KV cell is dedicated to the sequence ID corresponding to its own index.
* mamba : use a state mask
It's cleaner than the previous heuristic of
checking for the pos of the first token in the batch.
inp_KQ_mask could not be re-used for this, because it has the wrong shape
and because it seems more suited to the next step of
simultaneous sequence processing (helping with the problem of
remembering which token belongs to which sequence(s)/state(s)).
* llama : replace the usage of n_ctx with kv_self.size in many places
* mamba : use n_tokens directly instead of n_tok
* mamba : in comments, properly refer to KV cells instead of slots
* mamba : reduce memory usage of ggml_ssm_scan
From 290.37 MiB to 140.68 MiB of CPU compute buffer size
with Mamba 3B with a batch size of 512.
The result tensor of ggml_ssm_scan was previously a big part
of the CPU compute buffer size. To make it smaller,
it does not contain the intermediate ssm states anymore.
Both y and the last ssm state are combined in the result tensor,
because it seems only a single tensor can be returned by an operator
with the way the graph is built.
* mamba : simultaneous sequence processing
A batch can now contain tokens from multiple sequences.
This is necessary for at least the parallel example, the server example,
and the HellaSwag test in the perplexity example.
However, for this to be useful, uses of llama_kv_cache_seq_rm/cp
will need to be changed to work on whole sequences.
* ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba
This operator makes it possible to use and update the correct states
for each token of the batch in the same way as ggml_ssm_scan.
Other solutions which use existing operators would need loops which would
add too many nodes to the graph (at least the ones I thought of).
Using this operator further reduces the size of the CPU compute buffer
from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512.
And (at least on CPU), it's a bit faster than before.
Note that "ggml_ssm_conv" is probably not the most appropriate name,
and it could be changed if a better one is found.
* llama : add inp_s_seq as a new input tensor
The most convenient implementation to select the correct state (for Mamba)
for each token is to directly get the correct index from a tensor.
This is why inp_s_seq is storing int32_t and not floats.
The other, less convenient way to select the correct state would be
to have inp_KQ_mask contain 1.0f for each state used by a token
and 0.0f otherwise. This complicates quickly fetching the first used
state of a token, and is also less efficient because a whole row
of the mask would always need to be read for each token.
Using indexes makes it easy to stop searching when there are
no more sequences for a token, and the first sequence assigned
is always very quickly available (it's the first element of each row).
* mamba : support llama_kv_cache_seq_cp copy chains
* mamba : support shifting and dividing the kv cache pos
* mamba : make the server and parallel examples work with whole sequences
A seq_id is dedicated to the system prompt in both cases.
* llama : make llama_kv_cache_seq_rm return whether it succeeded or not
* mamba : dedicate an input tensor for state copy indices
This is cleaner and makes it easier to adapt when/if token positions
(and by extension, inp_K_shift) are no longer integers.
* mamba : adapt perplexity, batched, and batched-bench examples
* perplexity : limit the max number of sequences
This adapts to what the loaded model can provide.
* llama : add llama_n_max_seq to get the upper limit for seq_ids
Used by the perplexity example.
* batched : pass n_parallel to the model's context params
This should have been there already, but it wasn't.
* batched-bench : reserve sequences to support Mamba
* batched-bench : fix tokens being put in wrong sequences
Generation quality isn't what's measured in there anyway,
but at least using the correct sequences avoids using non-consecutive
token positions.
* mamba : stop abusing attention metadata
This breaks existing converted-to-GGUF Mamba models,
but will allow supporting mixed architectures like MambaFormer
without needing to break Mamba models.
This will also allow changing the size of Mamba's states
without having to reconvert models in the future.
(e.g. using something else than d_conv - 1 columns for the conv_states
will not require breaking existing converted Mamba models again)
* gguf-py : add new KV metadata key-value pairs for Mamba
* llama : add new metadata key-value pairs for Mamba
* llama : guard against divisions by zero when n_head is 0
* mamba : rename "unlimited" KV cache property to "recurrent"
* mamba : more correctly update the "used" field of the KV cache
* ggml : in ggml_ssm_scan, use a threshold for soft_plus
This is how the official Mamba implementation does it,
and it's also what torch.nn.Softplus does.
* convert : for Mamba, fallback to internal NeoX tokenizer
The resulting models are exactly the same
as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there.
* mamba : support state saving and restoring
* ggml : implicitly pass src tensors through dst for Mamba-related ops
* mamba : clarify some comments
* server : fix cache_tokens not getting correctly resized
Otherwise, when the "we have to evaluate at least 1 token" special case
was triggered, an extra token was kept in cache_tokens even if it was
removed from the KV cache.
For Mamba, this caused useless prompt reprocessing when the previous
request triggered the above case.
* convert-hf : support new metadata keys for Mamba
For the models available at
https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406
* mamba : rename metadata to be more similar to transformers library
This breaks existing converted-to-GGUF models,
but the metadata names are more "standard".
* mamba : support mamba-*-hf models
These models share their token_embd.weight with their output.weight
* mamba : add missing spaces
This is purely a formatting change.
* convert-hf : omit output.weight when identical with token_embd.weight
Only for Mamba for now, but it might be relevant for other models eventually.
Most Mamba models actually share these two tensors, albeit implicitly.
* readme : add Mamba to supported models, and add recent API changes
* mamba : move state_seq and state_mask views outside layer loop
A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 23:31:00 +01:00
params . n_parallel - = 1 ; // but be sneaky about it
2024-03-07 10:41:53 +01:00
if ( model = = nullptr ) {
2023-10-22 21:53:08 +02:00
LOG_ERROR ( " unable to load model " , { { " model " , params . model } } ) ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
return false ;
2023-05-21 19:51:18 +02:00
}
2023-10-22 21:53:08 +02:00
2023-09-28 21:42:38 +02:00
n_ctx = llama_n_ctx ( ctx ) ;
2023-10-22 21:53:08 +02:00
2023-11-17 03:14:37 +01:00
add_bos_token = llama_should_add_bos_token ( model ) ;
2024-04-09 19:44:08 +02:00
GGML_ASSERT ( llama_add_eos_token ( model ) ! = 1 ) ;
2023-11-17 03:14:37 +01:00
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
return true ;
2023-05-21 19:51:18 +02:00
}
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-03-07 10:41:53 +01:00
bool validate_model_chat_template ( ) const {
2024-02-22 09:33:24 +01:00
llama_chat_message chat [ ] = { { " user " , " test " } } ;
2024-03-07 10:41:53 +01:00
const int res = llama_chat_apply_template ( model , nullptr , chat , 1 , true , nullptr , 0 ) ;
return res > 0 ;
2024-02-22 09:33:24 +01:00
}
2024-03-09 16:34:15 +01:00
void init ( ) {
2023-10-22 21:53:08 +02:00
const int32_t n_ctx_slot = n_ctx / params . n_parallel ;
2024-02-25 13:50:32 +01:00
LOG_INFO ( " initializing slots " , { { " n_slots " , params . n_parallel } } ) ;
2024-03-09 16:34:15 +01:00
2024-03-07 10:41:53 +01:00
for ( int i = 0 ; i < params . n_parallel ; i + + ) {
2024-02-29 21:42:11 +01:00
server_slot slot ;
2023-10-22 21:53:08 +02:00
slot . id = i ;
slot . n_ctx = n_ctx_slot ;
2024-02-18 17:30:09 +01:00
slot . n_predict = params . n_predict ;
2023-10-22 21:53:08 +02:00
2024-02-25 13:50:32 +01:00
LOG_INFO ( " new slot " , {
2024-03-07 10:41:53 +01:00
{ " id_slot " , slot . id } ,
2024-02-25 13:50:32 +01:00
{ " n_ctx_slot " , slot . n_ctx }
} ) ;
2024-01-27 14:38:05 +01:00
const int ga_n = params . grp_attn_n ;
const int ga_w = params . grp_attn_w ;
if ( ga_n ! = 1 ) {
2024-03-02 22:00:14 +01:00
GGML_ASSERT ( ga_n > 0 & & " ga_n must be positive " ) ; // NOLINT
GGML_ASSERT ( ga_w % ga_n = = 0 & & " ga_w must be a multiple of ga_n " ) ; // NOLINT
2024-01-27 14:38:05 +01:00
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
2024-02-25 13:50:32 +01:00
LOG_INFO ( " slot self-extend " , {
2024-03-07 10:41:53 +01:00
{ " id_slot " , slot . id } ,
{ " ga_n " , ga_n } ,
{ " ga_w " , ga_w }
2024-02-25 13:50:32 +01:00
} ) ;
2024-01-27 14:38:05 +01:00
}
slot . ga_i = 0 ;
slot . ga_n = ga_n ;
slot . ga_w = ga_w ;
slot . reset ( ) ;
2023-10-22 21:53:08 +02:00
slots . push_back ( slot ) ;
}
2024-02-05 09:10:22 +01:00
default_generation_settings_for_props = get_formated_generation ( slots . front ( ) ) ;
default_generation_settings_for_props [ " seed " ] = - 1 ;
2024-03-13 18:54:21 +01:00
// the update_slots() logic will always submit a maximum of n_batch tokens
// note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
{
const int32_t n_batch = llama_n_batch ( ctx ) ;
llama : greatly reduce output buffer memory usage (#6122)
* llama : greatly reduce logits memory usage
* llama : more compact state saving and reloading
* llama : fix lctx.n_outputs not being set before building graph
* perplexity : adapt to the logits API changes
* perplexity : fix Winogrande, use correct logits for second choice start
The first logits used to evaluate the second choice were not from
the end of the common prefix; instead, they were the logits from the end
of the first choice. This has been corrected.
The previous implementation sometimes had outliers in the scores of
choices for some tasks, and the logic to skip choices words
in the log-likelihood evaluation probably was an attempt to reduce those,
but it was complex and didn't quite seem to be the right thing.
This is simpler now, and the outlier scores aren't there anymore.
* perplexity : normalize spaces and punctuation in Winogrande sentences
* llama : fix embedding conditions
* llama : fix llama_get_embeddings_ith when the resulting id is 0
* llama : fix wrong n_outputs in llama_set_inputs
A mismatch happened when using a smaller n_ubatch than n_batch and then using
llama_batch_get_one(). The decision of what n_outputs should be now almost
fully depends on how lctx.n_outputs is set in llama_decode_internal.
The conditions are simpler this way.
* llama : when saving the state, recalculate n_outputs
This ensures the correct number of outputs for the entire previous batch
is stored in the session file, even when n_ubatch is smaller than n_batch.
* llama : fix not-skipping outputs of non-causal models
* llama : fix running a batch with n_outputs == 0
It previously worked because lctx.inp_out_ids was not initialized,
so it pointed to some garbage address which was somehow still valid when I
ran my tests.
* llama : keep same graph topology even when n_outputs == 0
* ggml : saner ggml_can_repeat with empty tensors
* ggml : future-proof ggml_is_empty by using GGML_MAX_DIMS - 1
* ggml : do not multi-thread ops returning empty tensors
* ggml : make ggml_is_empty public and work with views
* llama : use a vector for ctx->output_ids
* llama : rework reallocation logic for llama_output_reserve
Now comparing the actual size with the new total size of the output buffer
to allow more efficient enabling and disabling of the embeddings
and/or logits output in the future.
* ggml : skip empty tensors in all backends
* llama : fix llama_output_reserve nullptr deref when new_size is 0
* perplexity : make Winogrande work as it does on master
The problems with the Winogrande implementation will
need to be fixed in a separate PR to ease review.
* llama : clearer error messages for invalid logits or embeddings ids
* llama : assert all models that can have inp_out_ids
Since the graph topology is now constant, this presence check
can be done even when there are no outputs.
* llama : assert logits and embd buffers exist before writing to them
* llama : handle errors from llama_output_reserve at call sites
* perplexity : make hellaswag and multiple-choice outputs identical to master
Due to how the KV cache is updated, the logprobs for tokens in a batch
are very slightly affected by the other tokens present in the batch,
so to make hellaswag and multiple-choice return exactly the same results
as on master, the last token of each sequence needs to be evaluated
even though its output is not used at all.
This will probably be changed back in the future to make these benchmarks
a tiny bit faster.
* perplexity : fix division by zero when using less than 100 multiple-choice tasks
* llama : allow loading state saved with a different ctx size
When loading a session file, the context size is now only required to be
at least enough to load the KV cells contained in that session file,
instead of requiring to use exactly the same context size as when saving.
Doing this enables the use-case of extending or shrinking the context size
of a saved session.
This breaks existing session files because the meaning of kv_buf_size
is slightly changed (previously it was the size of the whole KV cache,
now it's only the size of the saved part of it). This allows for
finer-grained sanity checks when loading in an effort to keep kv_buf_size
useful even when the kv_size is changed.
* llama : minor
ggml-ci
* readme : update recent API changes, and warn about Vulkan
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-26 15:46:41 +01:00
// only a single seq_id per token is needed
batch = llama_batch_init ( n_batch , 0 , 1 ) ;
2024-03-13 18:54:21 +01:00
}
2024-03-09 16:34:15 +01:00
metrics . init ( ) ;
2023-10-22 21:53:08 +02:00
}
2024-04-09 19:44:08 +02:00
std : : vector < llama_token > tokenize ( const json & json_prompt , bool add_special ) const {
2023-11-25 10:29:06 +01:00
// TODO: currently, we tokenize using special tokens by default
// this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
// but it's better compared to completely ignoring ChatML and other chat templates
const bool TMP_FORCE_SPECIAL = true ;
2023-08-23 09:12:12 +02:00
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
// or the first element of the json_prompt array is a string.
std : : vector < llama_token > prompt_tokens ;
2024-03-07 10:41:53 +01:00
if ( json_prompt . is_array ( ) ) {
2023-08-23 09:12:12 +02:00
bool first = true ;
2024-03-07 10:41:53 +01:00
for ( const auto & p : json_prompt ) {
if ( p . is_string ( ) ) {
2023-08-23 09:12:12 +02:00
auto s = p . template get < std : : string > ( ) ;
2024-03-07 10:41:53 +01:00
2023-08-23 09:12:12 +02:00
std : : vector < llama_token > p ;
2024-03-07 10:41:53 +01:00
if ( first ) {
2024-04-09 19:44:08 +02:00
p = : : llama_tokenize ( ctx , s , add_special , TMP_FORCE_SPECIAL ) ;
2023-08-23 09:12:12 +02:00
first = false ;
2024-03-07 10:41:53 +01:00
} else {
2023-11-25 10:29:06 +01:00
p = : : llama_tokenize ( ctx , s , false , TMP_FORCE_SPECIAL ) ;
2023-08-23 09:12:12 +02:00
}
2024-03-07 10:41:53 +01:00
2023-08-23 09:12:12 +02:00
prompt_tokens . insert ( prompt_tokens . end ( ) , p . begin ( ) , p . end ( ) ) ;
2024-03-07 10:41:53 +01:00
} else {
if ( first ) {
2023-08-23 09:12:12 +02:00
first = false ;
}
2024-03-07 10:41:53 +01:00
2023-08-23 09:12:12 +02:00
prompt_tokens . push_back ( p . template get < llama_token > ( ) ) ;
}
}
2024-03-07 10:41:53 +01:00
} else {
2023-08-23 09:12:12 +02:00
auto s = json_prompt . template get < std : : string > ( ) ;
2024-04-09 19:44:08 +02:00
prompt_tokens = : : llama_tokenize ( ctx , s , add_special , TMP_FORCE_SPECIAL ) ;
2023-08-23 09:12:12 +02:00
}
return prompt_tokens ;
}
2024-03-07 10:41:53 +01:00
server_slot * get_slot ( int id ) {
2023-10-22 21:53:08 +02:00
int64_t t_last = ggml_time_us ( ) ;
2023-10-20 20:07:23 +02:00
2024-03-07 10:41:53 +01:00
server_slot * last_used = nullptr ;
for ( server_slot & slot : slots ) {
if ( slot . id = = id & & slot . available ( ) ) {
2023-10-22 21:53:08 +02:00
return & slot ;
}
2023-10-20 20:07:23 +02:00
2024-03-07 10:41:53 +01:00
// among all available slots, find the one that has been least recently used
if ( slot . available ( ) & & slot . t_last_used < t_last ) {
2023-10-22 21:53:08 +02:00
last_used = & slot ;
t_last = slot . t_last_used ;
}
}
2023-10-20 20:07:23 +02:00
2023-10-22 21:53:08 +02:00
return last_used ;
2023-08-08 15:29:19 +02:00
}
2024-03-11 10:56:41 +01:00
bool launch_slot_with_task ( server_slot & slot , const server_task & task ) {
2023-10-22 21:53:08 +02:00
slot_params default_params ;
llama_sampling_params default_sparams ;
2024-03-11 10:56:41 +01:00
auto & data = task . data ;
2023-10-22 21:53:08 +02:00
2023-11-25 10:29:06 +01:00
if ( data . count ( " __oaicompat " ) ! = 0 ) {
2024-03-07 10:41:53 +01:00
slot . oaicompat = true ;
slot . oaicompat_model = json_value ( data , " model " , std : : string ( DEFAULT_OAICOMPAT_MODEL ) ) ;
2023-11-25 10:29:06 +01:00
} else {
2024-03-07 10:41:53 +01:00
slot . oaicompat = false ;
slot . oaicompat_model = " " ;
}
slot . params . stream = json_value ( data , " stream " , false ) ;
slot . params . cache_prompt = json_value ( data , " cache_prompt " , false ) ;
slot . params . n_predict = json_value ( data , " n_predict " , default_params . n_predict ) ;
slot . sparams . top_k = json_value ( data , " top_k " , default_sparams . top_k ) ;
slot . sparams . top_p = json_value ( data , " top_p " , default_sparams . top_p ) ;
slot . sparams . min_p = json_value ( data , " min_p " , default_sparams . min_p ) ;
slot . sparams . tfs_z = json_value ( data , " tfs_z " , default_sparams . tfs_z ) ;
slot . sparams . typical_p = json_value ( data , " typical_p " , default_sparams . typical_p ) ;
slot . sparams . temp = json_value ( data , " temperature " , default_sparams . temp ) ;
slot . sparams . dynatemp_range = json_value ( data , " dynatemp_range " , default_sparams . dynatemp_range ) ;
slot . sparams . dynatemp_exponent = json_value ( data , " dynatemp_exponent " , default_sparams . dynatemp_exponent ) ;
slot . sparams . penalty_last_n = json_value ( data , " repeat_last_n " , default_sparams . penalty_last_n ) ;
slot . sparams . penalty_repeat = json_value ( data , " repeat_penalty " , default_sparams . penalty_repeat ) ;
slot . sparams . penalty_freq = json_value ( data , " frequency_penalty " , default_sparams . penalty_freq ) ;
slot . sparams . penalty_present = json_value ( data , " presence_penalty " , default_sparams . penalty_present ) ;
slot . sparams . mirostat = json_value ( data , " mirostat " , default_sparams . mirostat ) ;
slot . sparams . mirostat_tau = json_value ( data , " mirostat_tau " , default_sparams . mirostat_tau ) ;
slot . sparams . mirostat_eta = json_value ( data , " mirostat_eta " , default_sparams . mirostat_eta ) ;
slot . sparams . penalize_nl = json_value ( data , " penalize_nl " , default_sparams . penalize_nl ) ;
slot . params . n_keep = json_value ( data , " n_keep " , slot . params . n_keep ) ;
2024-03-26 09:47:43 +01:00
slot . params . n_discard = json_value ( data , " n_discard " , default_params . n_discard ) ;
2024-04-24 11:08:36 +02:00
slot . sparams . seed = json_value ( data , " seed " , default_sparams . seed ) ;
2024-03-25 09:42:17 +01:00
slot . sparams . n_probs = json_value ( data , " n_probs " , default_sparams . n_probs ) ;
slot . sparams . min_keep = json_value ( data , " min_keep " , default_sparams . min_keep ) ;
// process "json_schema" and "grammar"
2024-05-08 21:53:08 +02:00
if ( data . contains ( " json_schema " ) & & ! data . at ( " json_schema " ) . is_null ( ) & & data . contains ( " grammar " ) & & ! data . at ( " grammar " ) . is_null ( ) ) {
2024-03-25 09:42:17 +01:00
send_error ( task , " Either \" json_schema \" or \" grammar \" can be specified, but not both " , ERROR_TYPE_INVALID_REQUEST ) ;
return false ;
} else if ( data . contains ( " json_schema " ) & & ! data . contains ( " grammar " ) ) {
json-schema-to-grammar improvements (+ added to server) (#5978)
* json: fix arrays (disallow `[,1]`)
* json: support tuple types (`[number, string]`)
* json: support additionalProperties (`{[k: string]: [string,number][]}`)
* json: support required / optional properties
* json: add support for pattern
* json: resolve $ref (and support https schema urls)
* json: fix $ref resolution
* join: support union types (mostly for nullable types I think)
* json: support allOf + nested anyOf
* json: support any (`{}` or `{type: object}`)
* json: fix merge
* json: temp fix for escapes
* json: spaces in output and unrestricted output spaces
* json: add typings
* json:fix typo
* Create ts-type-to-grammar.sh
* json: fix _format_literal (json.dumps already escapes quotes)
* json: merge lit sequences and handle negatives
{"type": "string", "pattern": "^({\"question\": \"[^\"]+\", \"response\": \"[^\"]+\"}\\n)+$"}
* json: handle pattern repetitions
* Update json-schema-to-grammar.mjs
* Create regex-to-grammar.py
* json: extract repeated regexp patterns to subrule
* Update json-schema-to-grammar.py
* Update json-schema-to-grammar.py
* Update json-schema-to-grammar.py
* json: handle schema from pydantic Optional fields
* Update json-schema-to-grammar.py
* Update json-schema-to-grammar.py
* Update ts-type-to-grammar.sh
* Update ts-type-to-grammar.sh
* json: simplify nullable fields handling
* json: accept duplicate identical rules
* json: revert space to 1 at most
* json: reuse regexp pattern subrules
* json: handle uuid string format
* json: fix literal escapes
* json: add --allow-fetch
* json: simplify range escapes
* json: support negative ranges in patterns
* Delete commit.txt
* json: custom regex parser, adds dot support & JS-portable
* json: rm trailing spaces
* Update json-schema-to-grammar.mjs
* json: updated server & chat `( cd examples/server && ./deps.sh )`
* json: port fixes from mjs to python
* Update ts-type-to-grammar.sh
* json: support prefixItems alongside array items
* json: add date format + fix uuid
* json: add date, time, date-time formats
* json: preserve order of props from TS defs
* json: port schema converter to C++, wire in ./server
* json: nits
* Update json-schema-to-grammar.cpp
* Update json-schema-to-grammar.cpp
* Update json-schema-to-grammar.cpp
* json: fix mjs implementation + align outputs
* Update json-schema-to-grammar.mjs.hpp
* json: test C++, JS & Python versions
* json: nits + regen deps
* json: cleanup test
* json: revert from c++17 to 11
* json: nit fixes
* json: dirty include for test
* json: fix zig build
* json: pass static command to std::system in tests (fixed temp files)
* json: fix top-level $refs
* json: don't use c++20 designated initializers
* nit
* json: basic support for reserved names `{number:{number:{root:number}}}`
* Revamp test cmake to allow args (WORKING_DIRECTORY needed for JSON test)
* json: re-ran server deps.sh
* json: simplify test
* json: support mix of additional props & required/optional
* json: add tests for some expected failures
* json: fix type=const in c++, add failure expectations for non-str const&enum
* json: test (& simplify output of) empty schema
* json: check parsing in test + fix value & string refs
* json: add server tests for OAI JSON response_format
* json: test/fix top-level anyOf
* json: improve grammar parsing failures
* json: test/fix additional props corner cases
* json: fix string patterns (was missing quotes)
* json: ws nit
* json: fix json handling in server when there's no response_format
* json: catch schema conversion errors in server
* json: don't complain about unknown format type in server if unset
* json: cleaner build of test
* json: create examples/json-schema-pydantic-example.py
* json: fix date pattern
* json: move json.hpp & json-schema-to-grammar.{cpp,h} to common
* json: indent 4 spaces
* json: fix naming of top-level c++ function (+ drop unused one)
* json: avoid using namespace std
* json: fix zig build
* Update server.feature
* json: iostream -> fprintf
* json: space before & refs for consistency
* json: nits
2024-03-21 12:50:43 +01:00
try {
2024-03-25 09:42:17 +01:00
auto schema = json_value ( data , " json_schema " , json : : object ( ) ) ;
json-schema-to-grammar improvements (+ added to server) (#5978)
* json: fix arrays (disallow `[,1]`)
* json: support tuple types (`[number, string]`)
* json: support additionalProperties (`{[k: string]: [string,number][]}`)
* json: support required / optional properties
* json: add support for pattern
* json: resolve $ref (and support https schema urls)
* json: fix $ref resolution
* join: support union types (mostly for nullable types I think)
* json: support allOf + nested anyOf
* json: support any (`{}` or `{type: object}`)
* json: fix merge
* json: temp fix for escapes
* json: spaces in output and unrestricted output spaces
* json: add typings
* json:fix typo
* Create ts-type-to-grammar.sh
* json: fix _format_literal (json.dumps already escapes quotes)
* json: merge lit sequences and handle negatives
{"type": "string", "pattern": "^({\"question\": \"[^\"]+\", \"response\": \"[^\"]+\"}\\n)+$"}
* json: handle pattern repetitions
* Update json-schema-to-grammar.mjs
* Create regex-to-grammar.py
* json: extract repeated regexp patterns to subrule
* Update json-schema-to-grammar.py
* Update json-schema-to-grammar.py
* Update json-schema-to-grammar.py
* json: handle schema from pydantic Optional fields
* Update json-schema-to-grammar.py
* Update json-schema-to-grammar.py
* Update ts-type-to-grammar.sh
* Update ts-type-to-grammar.sh
* json: simplify nullable fields handling
* json: accept duplicate identical rules
* json: revert space to 1 at most
* json: reuse regexp pattern subrules
* json: handle uuid string format
* json: fix literal escapes
* json: add --allow-fetch
* json: simplify range escapes
* json: support negative ranges in patterns
* Delete commit.txt
* json: custom regex parser, adds dot support & JS-portable
* json: rm trailing spaces
* Update json-schema-to-grammar.mjs
* json: updated server & chat `( cd examples/server && ./deps.sh )`
* json: port fixes from mjs to python
* Update ts-type-to-grammar.sh
* json: support prefixItems alongside array items
* json: add date format + fix uuid
* json: add date, time, date-time formats
* json: preserve order of props from TS defs
* json: port schema converter to C++, wire in ./server
* json: nits
* Update json-schema-to-grammar.cpp
* Update json-schema-to-grammar.cpp
* Update json-schema-to-grammar.cpp
* json: fix mjs implementation + align outputs
* Update json-schema-to-grammar.mjs.hpp
* json: test C++, JS & Python versions
* json: nits + regen deps
* json: cleanup test
* json: revert from c++17 to 11
* json: nit fixes
* json: dirty include for test
* json: fix zig build
* json: pass static command to std::system in tests (fixed temp files)
* json: fix top-level $refs
* json: don't use c++20 designated initializers
* nit
* json: basic support for reserved names `{number:{number:{root:number}}}`
* Revamp test cmake to allow args (WORKING_DIRECTORY needed for JSON test)
* json: re-ran server deps.sh
* json: simplify test
* json: support mix of additional props & required/optional
* json: add tests for some expected failures
* json: fix type=const in c++, add failure expectations for non-str const&enum
* json: test (& simplify output of) empty schema
* json: check parsing in test + fix value & string refs
* json: add server tests for OAI JSON response_format
* json: test/fix top-level anyOf
* json: improve grammar parsing failures
* json: test/fix additional props corner cases
* json: fix string patterns (was missing quotes)
* json: ws nit
* json: fix json handling in server when there's no response_format
* json: catch schema conversion errors in server
* json: don't complain about unknown format type in server if unset
* json: cleaner build of test
* json: create examples/json-schema-pydantic-example.py
* json: fix date pattern
* json: move json.hpp & json-schema-to-grammar.{cpp,h} to common
* json: indent 4 spaces
* json: fix naming of top-level c++ function (+ drop unused one)
* json: avoid using namespace std
* json: fix zig build
* Update server.feature
* json: iostream -> fprintf
* json: space before & refs for consistency
* json: nits
2024-03-21 12:50:43 +01:00
slot . sparams . grammar = json_schema_to_grammar ( schema ) ;
} catch ( const std : : exception & e ) {
send_error ( task , std : : string ( " \" json_schema \" : " ) + e . what ( ) , ERROR_TYPE_INVALID_REQUEST ) ;
return false ;
}
} else {
slot . sparams . grammar = json_value ( data , " grammar " , default_sparams . grammar ) ;
}
2024-03-07 10:41:53 +01:00
if ( slot . params . cache_prompt & & slot . ga_n ! = 1 ) {
LOG_WARNING ( " cache_prompt is not supported with group-attention " , { } ) ;
slot . params . cache_prompt = false ;
}
if ( slot . n_predict > 0 & & slot . params . n_predict > slot . n_predict ) {
2024-02-18 17:30:09 +01:00
// Might be better to reject the request with a 400 ?
LOG_WARNING ( " Max tokens to predict exceeds server configuration " , {
2024-03-07 10:41:53 +01:00
{ " params.n_predict " , slot . params . n_predict } ,
{ " slot.n_predict " , slot . n_predict } ,
2024-02-18 17:30:09 +01:00
} ) ;
2024-03-07 10:41:53 +01:00
slot . params . n_predict = slot . n_predict ;
2024-02-18 17:30:09 +01:00
}
2023-10-22 21:53:08 +02:00
// infill
2024-03-07 10:41:53 +01:00
slot . params . input_prefix = json_value ( data , " input_prefix " , default_params . input_prefix ) ;
slot . params . input_suffix = json_value ( data , " input_suffix " , default_params . input_suffix ) ;
2024-03-09 12:16:53 +01:00
// get prompt
{
const auto & prompt = data . find ( " prompt " ) ;
if ( prompt = = data . end ( ) ) {
2024-03-11 10:56:41 +01:00
send_error ( task , " Either \" prompt \" or \" messages \" must be provided " , ERROR_TYPE_INVALID_REQUEST ) ;
return false ;
2024-03-09 12:16:53 +01:00
} else {
slot . prompt = * prompt ;
}
2024-03-11 10:56:41 +01:00
if ( slot . prompt . is_array ( ) & & slot . prompt . size ( ) = = 0 ) {
send_error ( task , " \" prompt \" cannot be an empty array " , ERROR_TYPE_INVALID_REQUEST ) ;
return false ;
}
2024-03-09 12:16:53 +01:00
}
2023-10-10 09:31:21 +02:00
2024-03-07 10:41:53 +01:00
// penalize user-provided tokens
2023-10-22 21:53:08 +02:00
{
2024-03-07 10:41:53 +01:00
slot . sparams . penalty_prompt_tokens . clear ( ) ;
slot . sparams . use_penalty_prompt_tokens = false ;
2023-10-20 20:07:23 +02:00
2024-03-07 10:41:53 +01:00
const auto & penalty_prompt = data . find ( " penalty_prompt " ) ;
2023-10-02 09:42:02 +02:00
2024-03-07 10:41:53 +01:00
if ( penalty_prompt ! = data . end ( ) ) {
if ( penalty_prompt - > is_string ( ) ) {
const auto penalty_prompt_string = penalty_prompt - > get < std : : string > ( ) ;
slot . sparams . penalty_prompt_tokens = llama_tokenize ( model , penalty_prompt_string , false ) ;
if ( slot . params . n_predict > 0 ) {
slot . sparams . penalty_prompt_tokens . reserve ( slot . sparams . penalty_prompt_tokens . size ( ) + slot . params . n_predict ) ;
}
slot . sparams . use_penalty_prompt_tokens = true ;
LOG_VERBOSE ( " penalty_prompt_tokens " , {
{ " id_slot " , slot . id } ,
{ " tokens " , slot . sparams . penalty_prompt_tokens } ,
} ) ;
2023-12-23 10:31:49 +01:00
}
2024-03-07 10:41:53 +01:00
else if ( penalty_prompt - > is_array ( ) ) {
const auto n_tokens = penalty_prompt - > size ( ) ;
slot . sparams . penalty_prompt_tokens . reserve ( n_tokens + std : : max ( 0 , slot . params . n_predict ) ) ;
const int n_vocab = llama_n_vocab ( model ) ;
for ( const auto & penalty_token : * penalty_prompt ) {
if ( penalty_token . is_number_integer ( ) ) {
const auto tok = penalty_token . get < llama_token > ( ) ;
if ( tok > = 0 & & tok < n_vocab ) {
slot . sparams . penalty_prompt_tokens . push_back ( tok ) ;
}
2023-12-23 10:31:49 +01:00
}
}
2024-03-07 10:41:53 +01:00
slot . sparams . use_penalty_prompt_tokens = true ;
LOG_VERBOSE ( " penalty_prompt_tokens " , {
{ " id_slot " , slot . id } ,
{ " tokens " , slot . sparams . penalty_prompt_tokens } ,
} ) ;
2023-12-23 10:31:49 +01:00
}
}
}
2023-10-02 09:42:02 +02:00
{
2024-03-07 10:41:53 +01:00
slot . sparams . logit_bias . clear ( ) ;
2023-10-02 09:42:02 +02:00
2024-03-07 10:41:53 +01:00
if ( json_value ( data , " ignore_eos " , false ) ) {
slot . sparams . logit_bias [ llama_token_eos ( model ) ] = - INFINITY ;
}
2024-02-11 14:38:14 +01:00
2024-03-07 10:41:53 +01:00
const auto & logit_bias = data . find ( " logit_bias " ) ;
if ( logit_bias ! = data . end ( ) & & logit_bias - > is_array ( ) ) {
const int n_vocab = llama_n_vocab ( model ) ;
for ( const auto & el : * logit_bias ) {
2024-03-11 10:56:41 +01:00
// TODO: we may want to throw errors here, in case "el" is incorrect
2024-03-07 10:41:53 +01:00
if ( el . is_array ( ) & & el . size ( ) = = 2 ) {
float bias ;
if ( el [ 1 ] . is_number ( ) ) {
bias = el [ 1 ] . get < float > ( ) ;
} else if ( el [ 1 ] . is_boolean ( ) & & ! el [ 1 ] . get < bool > ( ) ) {
bias = - INFINITY ;
} else {
continue ;
2023-10-22 21:53:08 +02:00
}
2024-03-07 10:41:53 +01:00
if ( el [ 0 ] . is_number_integer ( ) ) {
llama_token tok = el [ 0 ] . get < llama_token > ( ) ;
if ( tok > = 0 & & tok < n_vocab ) {
slot . sparams . logit_bias [ tok ] = bias ;
}
} else if ( el [ 0 ] . is_string ( ) ) {
auto toks = llama_tokenize ( model , el [ 0 ] . get < std : : string > ( ) , false ) ;
for ( auto tok : toks ) {
slot . sparams . logit_bias [ tok ] = bias ;
}
2023-10-22 21:53:08 +02:00
}
}
}
}
2023-10-02 09:42:02 +02:00
}
2023-10-20 20:07:23 +02:00
2023-10-02 09:42:02 +02:00
{
2024-03-07 10:41:53 +01:00
slot . params . antiprompt . clear ( ) ;
2023-10-02 09:42:02 +02:00
2024-03-07 10:41:53 +01:00
const auto & stop = data . find ( " stop " ) ;
if ( stop ! = data . end ( ) & & stop - > is_array ( ) ) {
for ( const auto & word : * stop ) {
if ( ! word . empty ( ) ) {
slot . params . antiprompt . push_back ( word ) ;
}
2024-02-16 12:33:25 +01:00
}
}
}
2023-10-22 21:53:08 +02:00
{
2024-03-07 10:41:53 +01:00
const auto & samplers_sequence = data . find ( " samplers " ) ;
if ( samplers_sequence ! = data . end ( ) & & samplers_sequence - > is_array ( ) ) {
std : : vector < std : : string > sampler_names ;
for ( const auto & sampler_name : * samplers_sequence ) {
if ( sampler_name . is_string ( ) ) {
sampler_names . emplace_back ( sampler_name ) ;
2023-10-22 21:53:08 +02:00
}
}
2024-05-22 19:04:20 +02:00
slot . sparams . samplers_sequence = llama_sampling_types_from_names ( sampler_names , false ) ;
2024-03-07 10:41:53 +01:00
} else {
slot . sparams . samplers_sequence = default_sparams . samplers_sequence ;
2023-10-22 21:53:08 +02:00
}
}
2023-10-12 08:29:04 +02:00
2023-10-02 09:42:02 +02:00
{
2024-03-07 10:41:53 +01:00
if ( slot . ctx_sampling ! = nullptr ) {
llama_sampling_free ( slot . ctx_sampling ) ;
}
slot . ctx_sampling = llama_sampling_init ( slot . sparams ) ;
2024-03-11 10:56:41 +01:00
if ( slot . ctx_sampling = = nullptr ) {
// for now, the only error that may happen here is invalid grammar
send_error ( task , " Failed to parse grammar " , ERROR_TYPE_INVALID_REQUEST ) ;
return false ;
}
2023-10-02 09:42:02 +02:00
}
2024-03-07 10:41:53 +01:00
slot . command = SLOT_COMMAND_LOAD_PROMPT ;
slot . prompt_tokens . clear ( ) ;
2023-10-12 08:29:04 +02:00
2024-02-25 13:50:32 +01:00
LOG_INFO ( " slot is processing task " , {
2024-03-07 10:41:53 +01:00
{ " id_slot " , slot . id } ,
{ " id_task " , slot . id_task } ,
2024-02-25 13:50:32 +01:00
} ) ;
2023-10-02 09:42:02 +02:00
2023-10-22 21:53:08 +02:00
return true ;
}
void kv_cache_clear ( ) {
2024-03-07 10:41:53 +01:00
LOG_VERBOSE ( " clearing KV cache " , { } ) ;
2023-10-22 21:53:08 +02:00
// clear the entire KV cache
2023-10-29 18:31:40 +01:00
llama_kv_cache_clear ( ctx ) ;
2023-10-22 21:53:08 +02:00
clean_kv_cache = false ;
2023-10-02 09:42:02 +02:00
}
2023-08-23 09:12:12 +02:00
2024-02-29 21:42:11 +01:00
void system_prompt_update ( ) {
2024-03-07 10:41:53 +01:00
LOG_VERBOSE ( " system prompt update " , {
{ " system_prompt " , system_prompt } ,
} ) ;
2024-02-16 11:00:56 +01:00
kv_cache_clear ( ) ;
system_tokens . clear ( ) ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-02-16 11:00:56 +01:00
if ( ! system_prompt . empty ( ) ) {
2024-04-09 19:44:08 +02:00
system_tokens = : : llama_tokenize ( ctx , system_prompt , true ) ;
2023-10-22 21:53:08 +02:00
2024-02-16 11:00:56 +01:00
llama_batch_clear ( batch ) ;
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
for ( int i = 0 ; i < ( int ) system_tokens . size ( ) ; + + i ) {
2024-02-16 11:00:56 +01:00
llama_batch_add ( batch , system_tokens [ i ] , i , { 0 } , false ) ;
}
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-03-13 18:54:21 +01:00
const int32_t n_batch = llama_n_batch ( ctx ) ;
for ( int32_t i = 0 ; i < batch . n_tokens ; i + = n_batch ) {
const int32_t n_tokens = std : : min ( params . n_batch , batch . n_tokens - i ) ;
2024-02-25 19:43:50 +01:00
llama_batch batch_view = {
n_tokens ,
batch . token + i ,
nullptr ,
batch . pos + i ,
batch . n_seq_id + i ,
batch . seq_id + i ,
batch . logits + i ,
0 , 0 , 0 , // unused
} ;
2024-03-07 10:41:53 +01:00
if ( llama_decode ( ctx , batch_view ) ! = 0 ) {
2024-04-12 13:49:21 +02:00
LOG_ERROR ( " llama_decode() failed " , { } ) ;
2024-02-25 19:43:50 +01:00
return ;
}
2024-02-16 11:00:56 +01:00
}
2023-10-20 20:07:23 +02:00
2024-02-16 11:00:56 +01:00
// assign the system KV cache to all parallel sequences
llama : support Mamba Selective State Space Models (#5328)
* mamba : begin working on support for Mamba SSM
* mamba : begin figuring out how to (ab)use the kv cache for Mamba
* mamba : recurrent inference almost works, but incoherent
* mamba : recurrent inference WORKS!!!
* convert : optionally use d_conv and d_state from config.json for Mamba
* mamba : refactor recurrent conv, resulting in 20% perf increase
It's still slower than I'd like, but I did not really optimize `ggml_exp` yet.
I also refactored `ggml_exp` to work with tensors with more than 2 dimensions.
* ggml : parallelize ggml_exp
This results in 8% faster token generation for Mamba-130M.
* mamba : simplify the conv step with a self-overlapping view
Turns out the conv_state can be made smaller by one column.
Note that this breaks existing GGUFs of Mamba,
because the key_value_length field is tied to the conv_state size.
Convolution with a self-overlapping view is cool!
And it's much simpler than what I initially thought would be necessary
to make the convolution step work with more than 1 token at a time.
Next step is to make the SSM step work on batches of tokens too,
and thus I need to figure out a way to make a parallel selective scan
which will keep the ssm_state small and won't make it bigger
by a factor of (n_layer * batch_size).
* llama : fix Mamba KV self size wrongly displaying as f16 instead of f32
Relatedly, I also tried to see if other types than f32 worked for the states,
but they don't, because of the operators used.
It's probably better anyway to keep lots of precision there,
since the states are small anyway.
* mamba : fix self-overlapping view depth stride
* mamba : handle batches of more than 1 token
This means running Mamba no longer crashes when using the default settings!
And probably also slightly faster prompt processing.
Both batched and non-batched processing yield the same output.
Previously, the state was not cleared when starting a sequence.
Next step is to make the KV cache API work as expected for Mamba models.
* ggml: add ggml_ssm_scan to help with parallel selective scan
If the selective scan was implemented without a custom operator,
there would be waaay too many nodes in the graph. For example,
for Mamba-130M, with a batch size of 512 (the default),
a naive selective scan could add at least 24*512=12288 nodes,
which is more than LLAMA_MAX_NODES (8192),
and that's only for the smallest Mamba model.
So it's much cleaner with a custom operator.
Not sure about the name, though.
* ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation
This will help with performance on CPU if ggml_vec_mul_f32
and ggml_vec_add_f32 are ever optimized with SIMD.
* mamba : very basic quantization support
Mostly works, but there is currently no difference
between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same).
Most of the SSM-specific weights can be kept in f32 without affecting
the size that much, since they are relatively small.
(the linear projection weights are responsible for most of Mamba's size)
Too much quantization seems to make the state degrade quite fast, and
the model begins to output gibberish.
It seems to affect bigger models to a lesser extent than small models,
but I'm not sure by how much.
Experimentation will be needed to figure out which weights are more important
for the _M (and _L?) variants of k-quants for Mamba.
* convert : fix wrong name for layer norm weight of offical Mamba models
I was using Q-bert/Mamba-* models before, which have a slighlty different
naming scheme for the weights.
(they start with "model.layers" instead of "backbone.layers")
* mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator
This increases performance on CPU by around 30% for prompt processing,
and by around 20% for text generation.
However, it also makes the ggml_exp and ggml_soft_plus operators unused.
Whether or not they should be kept will be decided later.
* convert : for Mamba, also consider the "MambaLMHeadModel" arch name
It's the name of the class of the official implementation,
though they don't use it (yet) in the "architectures" field of config.json
* mamba : fix vocab size problems with official models
The perplexity was waaaay to high for models with a non-round vocab size.
Not sure why, but it needed to be fixed in the metadata.
Note that this breaks existing GGUF-converted Mamba models,
but **only if** the vocab size was not already rounded.
* ggml : remove ggml_exp and ggml_soft_plus
They did not exist anyway outside of this branch,
and since ggml_ssm_scan fused operations together, they are unused.
It's always possible to bring them back if needed.
* mamba : remove some useless comments
No code change.
* convert : fix flake8 linter errors
* mamba : apply suggestions from code review
* mamba : remove unecessary branch for row-wise ssm_state and C multiplication
It was previously done to avoid permuting when only one token is processed
at a time (like when generating text), but permuting is cheap,
and dynamically changing the compute graph is not future-proof.
* ggml : in ggml_ssm_scan, use more appropriate asserts
* ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32
* mamba : multiple sequences, but one at a time
This is a step towards making this Mamba implementation usable
with the server example (the way the system prompt is kept when clearing
the client slots will need to be changed before this can work, though).
The KV cache size for this kind of model is tied to the maximum number
of sequences kept at any single time.
For now, this number is obtained from n_parallel (plus one,
to have an extra sequence to dedicate to the system prompt),
but there might be a better way to do this which won't also
make the main example use 2 cells even if only 1 is really used.
(for this specific case, --parallel 0 helps)
Simultaneous sequence processing will probably require changes to
ggml_ssm_scan, and possibly a new operator for the conv step.
* mamba : support llama_kv_cache_seq_cp
This (mis)uses the logic around K shifts, because tokens in a state
can't be shifted anyway, and because inp_K_shift has the right shape and type.
Using ggml_get_rows is a nice way to do copies, but copy chains can't work.
Fortunately, copy chains don't really seem to be used in the examples.
Each KV cell is dedicated to the sequence ID corresponding to its own index.
* mamba : use a state mask
It's cleaner than the previous heuristic of
checking for the pos of the first token in the batch.
inp_KQ_mask could not be re-used for this, because it has the wrong shape
and because it seems more suited to the next step of
simultaneous sequence processing (helping with the problem of
remembering which token belongs to which sequence(s)/state(s)).
* llama : replace the usage of n_ctx with kv_self.size in many places
* mamba : use n_tokens directly instead of n_tok
* mamba : in comments, properly refer to KV cells instead of slots
* mamba : reduce memory usage of ggml_ssm_scan
From 290.37 MiB to 140.68 MiB of CPU compute buffer size
with Mamba 3B with a batch size of 512.
The result tensor of ggml_ssm_scan was previously a big part
of the CPU compute buffer size. To make it smaller,
it does not contain the intermediate ssm states anymore.
Both y and the last ssm state are combined in the result tensor,
because it seems only a single tensor can be returned by an operator
with the way the graph is built.
* mamba : simultaneous sequence processing
A batch can now contain tokens from multiple sequences.
This is necessary for at least the parallel example, the server example,
and the HellaSwag test in the perplexity example.
However, for this to be useful, uses of llama_kv_cache_seq_rm/cp
will need to be changed to work on whole sequences.
* ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba
This operator makes it possible to use and update the correct states
for each token of the batch in the same way as ggml_ssm_scan.
Other solutions which use existing operators would need loops which would
add too many nodes to the graph (at least the ones I thought of).
Using this operator further reduces the size of the CPU compute buffer
from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512.
And (at least on CPU), it's a bit faster than before.
Note that "ggml_ssm_conv" is probably not the most appropriate name,
and it could be changed if a better one is found.
* llama : add inp_s_seq as a new input tensor
The most convenient implementation to select the correct state (for Mamba)
for each token is to directly get the correct index from a tensor.
This is why inp_s_seq is storing int32_t and not floats.
The other, less convenient way to select the correct state would be
to have inp_KQ_mask contain 1.0f for each state used by a token
and 0.0f otherwise. This complicates quickly fetching the first used
state of a token, and is also less efficient because a whole row
of the mask would always need to be read for each token.
Using indexes makes it easy to stop searching when there are
no more sequences for a token, and the first sequence assigned
is always very quickly available (it's the first element of each row).
* mamba : support llama_kv_cache_seq_cp copy chains
* mamba : support shifting and dividing the kv cache pos
* mamba : make the server and parallel examples work with whole sequences
A seq_id is dedicated to the system prompt in both cases.
* llama : make llama_kv_cache_seq_rm return whether it succeeded or not
* mamba : dedicate an input tensor for state copy indices
This is cleaner and makes it easier to adapt when/if token positions
(and by extension, inp_K_shift) are no longer integers.
* mamba : adapt perplexity, batched, and batched-bench examples
* perplexity : limit the max number of sequences
This adapts to what the loaded model can provide.
* llama : add llama_n_max_seq to get the upper limit for seq_ids
Used by the perplexity example.
* batched : pass n_parallel to the model's context params
This should have been there already, but it wasn't.
* batched-bench : reserve sequences to support Mamba
* batched-bench : fix tokens being put in wrong sequences
Generation quality isn't what's measured in there anyway,
but at least using the correct sequences avoids using non-consecutive
token positions.
* mamba : stop abusing attention metadata
This breaks existing converted-to-GGUF Mamba models,
but will allow supporting mixed architectures like MambaFormer
without needing to break Mamba models.
This will also allow changing the size of Mamba's states
without having to reconvert models in the future.
(e.g. using something else than d_conv - 1 columns for the conv_states
will not require breaking existing converted Mamba models again)
* gguf-py : add new KV metadata key-value pairs for Mamba
* llama : add new metadata key-value pairs for Mamba
* llama : guard against divisions by zero when n_head is 0
* mamba : rename "unlimited" KV cache property to "recurrent"
* mamba : more correctly update the "used" field of the KV cache
* ggml : in ggml_ssm_scan, use a threshold for soft_plus
This is how the official Mamba implementation does it,
and it's also what torch.nn.Softplus does.
* convert : for Mamba, fallback to internal NeoX tokenizer
The resulting models are exactly the same
as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there.
* mamba : support state saving and restoring
* ggml : implicitly pass src tensors through dst for Mamba-related ops
* mamba : clarify some comments
* server : fix cache_tokens not getting correctly resized
Otherwise, when the "we have to evaluate at least 1 token" special case
was triggered, an extra token was kept in cache_tokens even if it was
removed from the KV cache.
For Mamba, this caused useless prompt reprocessing when the previous
request triggered the above case.
* convert-hf : support new metadata keys for Mamba
For the models available at
https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406
* mamba : rename metadata to be more similar to transformers library
This breaks existing converted-to-GGUF models,
but the metadata names are more "standard".
* mamba : support mamba-*-hf models
These models share their token_embd.weight with their output.weight
* mamba : add missing spaces
This is purely a formatting change.
* convert-hf : omit output.weight when identical with token_embd.weight
Only for Mamba for now, but it might be relevant for other models eventually.
Most Mamba models actually share these two tensors, albeit implicitly.
* readme : add Mamba to supported models, and add recent API changes
* mamba : move state_seq and state_mask views outside layer loop
A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 23:31:00 +01:00
for ( int32_t i = 1 ; i < = params . n_parallel ; + + i ) {
llama_kv_cache_seq_cp ( ctx , 0 , i , - 1 , - 1 ) ;
2024-02-16 11:00:56 +01:00
}
2023-05-21 19:51:18 +02:00
}
2023-10-22 21:53:08 +02:00
system_need_update = false ;
}
2023-09-28 18:04:36 +02:00
2024-05-11 17:28:10 +02:00
bool system_prompt_set ( const std : : string & sys_prompt ) {
system_prompt = sys_prompt ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-03-07 10:41:53 +01:00
LOG_VERBOSE ( " system prompt process " , {
{ " system_prompt " , system_prompt } ,
} ) ;
2024-02-16 11:00:56 +01:00
2024-03-07 10:41:53 +01:00
// release all slots
for ( server_slot & slot : slots ) {
slot . release ( ) ;
2023-10-22 21:53:08 +02:00
}
2024-03-07 10:41:53 +01:00
system_need_update = true ;
2024-05-11 17:28:10 +02:00
return true ;
2023-10-22 21:53:08 +02:00
}
2024-03-07 10:41:53 +01:00
bool process_token ( completion_token_output & result , server_slot & slot ) {
2023-10-22 21:53:08 +02:00
// remember which tokens were sampled - used for repetition penalties during sampling
2024-04-24 12:15:29 +02:00
const std : : string token_str = llama_token_to_piece ( ctx , result . tok , false ) ;
2023-10-22 21:53:08 +02:00
slot . sampled = result . tok ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2023-10-22 21:53:08 +02:00
// search stop word and delete it
slot . generated_text + = token_str ;
slot . has_next_token = true ;
2024-03-07 10:41:53 +01:00
if ( slot . ctx_sampling - > params . use_penalty_prompt_tokens & & result . tok ! = - 1 ) {
2023-12-23 10:31:49 +01:00
// we can change penalty_prompt_tokens because it is always created from scratch each request
slot . ctx_sampling - > params . penalty_prompt_tokens . push_back ( result . tok ) ;
}
2023-12-13 20:57:15 +01:00
// check if there is incomplete UTF-8 character at the end
bool incomplete = false ;
2024-03-07 10:41:53 +01:00
for ( unsigned i = 1 ; i < 5 & & i < = slot . generated_text . size ( ) ; + + i ) {
2023-12-13 20:57:15 +01:00
unsigned char c = slot . generated_text [ slot . generated_text . size ( ) - i ] ;
2024-03-07 10:41:53 +01:00
if ( ( c & 0xC0 ) = = 0x80 ) {
2023-12-13 20:57:15 +01:00
// continuation byte: 10xxxxxx
continue ;
}
2024-03-07 10:41:53 +01:00
if ( ( c & 0xE0 ) = = 0xC0 ) {
2023-12-13 20:57:15 +01:00
// 2-byte character: 110xxxxx ...
incomplete = i < 2 ;
2024-03-07 10:41:53 +01:00
} else if ( ( c & 0xF0 ) = = 0xE0 ) {
2023-12-13 20:57:15 +01:00
// 3-byte character: 1110xxxx ...
incomplete = i < 3 ;
2024-03-07 10:41:53 +01:00
} else if ( ( c & 0xF8 ) = = 0xF0 ) {
2023-12-13 20:57:15 +01:00
// 4-byte character: 11110xxx ...
incomplete = i < 4 ;
2023-10-22 21:53:08 +02:00
}
2023-12-13 20:57:15 +01:00
// else 1-byte character or invalid byte
break ;
2023-05-21 19:51:18 +02:00
}
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-03-07 10:41:53 +01:00
if ( ! incomplete ) {
2024-02-29 21:42:11 +01:00
size_t pos = std : : min ( slot . n_sent_text , slot . generated_text . size ( ) ) ;
2024-03-07 10:41:53 +01:00
2023-10-22 21:53:08 +02:00
const std : : string str_test = slot . generated_text . substr ( pos ) ;
bool is_stop_full = false ;
2024-03-07 10:41:53 +01:00
size_t stop_pos = slot . find_stopping_strings ( str_test , token_str . size ( ) , STOP_TYPE_FULL ) ;
if ( stop_pos ! = std : : string : : npos ) {
2023-10-22 21:53:08 +02:00
is_stop_full = true ;
slot . generated_text . erase (
slot . generated_text . begin ( ) + pos + stop_pos ,
slot . generated_text . end ( ) ) ;
2024-02-29 21:42:11 +01:00
pos = std : : min ( slot . n_sent_text , slot . generated_text . size ( ) ) ;
2024-03-07 10:41:53 +01:00
} else {
2023-10-22 21:53:08 +02:00
is_stop_full = false ;
2024-03-07 10:41:53 +01:00
stop_pos = slot . find_stopping_strings ( str_test , token_str . size ( ) , STOP_TYPE_PARTIAL ) ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
}
2023-09-28 18:04:36 +02:00
2023-10-22 21:53:08 +02:00
// check if there is any token to predict
2024-03-07 10:41:53 +01:00
if ( stop_pos = = std : : string : : npos | | ( ! slot . has_next_token & & ! is_stop_full & & stop_pos > 0 ) ) {
2023-10-22 21:53:08 +02:00
// no send the stop word in the response
result . text_to_send = slot . generated_text . substr ( pos , std : : string : : npos ) ;
2024-02-29 21:42:11 +01:00
slot . n_sent_text + = result . text_to_send . size ( ) ;
2023-10-22 21:53:08 +02:00
// add the token to slot queue and cache
}
2024-03-07 10:41:53 +01:00
2023-10-22 21:53:08 +02:00
slot . add_token_string ( result ) ;
2024-03-07 10:41:53 +01:00
if ( slot . params . stream ) {
2023-10-22 21:53:08 +02:00
send_partial_response ( slot , result ) ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
}
2023-05-21 19:51:18 +02:00
}
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-03-07 10:41:53 +01:00
if ( incomplete ) {
2023-10-22 21:53:08 +02:00
slot . has_next_token = true ;
2023-06-20 00:12:39 +02:00
}
2023-10-22 21:53:08 +02:00
// check the limits
2024-03-07 10:41:53 +01:00
if ( slot . n_decoded > 0 & & slot . has_next_token & & ! slot . has_budget ( params ) ) {
slot . stopped_limit = true ;
2023-10-22 21:53:08 +02:00
slot . has_next_token = false ;
2024-03-07 10:41:53 +01:00
LOG_VERBOSE ( " stopped by limit " , {
{ " id_slot " , slot . id } ,
2024-03-09 10:30:04 +01:00
{ " id_task " , slot . id_task } ,
2024-03-07 10:41:53 +01:00
{ " n_decoded " , slot . n_decoded } ,
{ " n_predict " , slot . params . n_predict } ,
} ) ;
2023-10-22 21:53:08 +02:00
}
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-04-21 13:50:41 +02:00
if ( llama_token_is_eog ( model , result . tok ) ) {
2024-03-07 10:41:53 +01:00
slot . stopped_eos = true ;
2023-10-22 21:53:08 +02:00
slot . has_next_token = false ;
2024-03-07 10:41:53 +01:00
2023-10-22 21:53:08 +02:00
LOG_VERBOSE ( " eos token found " , { } ) ;
}
2024-04-26 12:15:30 +02:00
auto n_ctx_train = llama_n_ctx_train ( model ) ;
2024-04-27 17:50:48 +02:00
if ( slot . params . n_predict < 1 & & slot . n_predict < 1 & & slot . ga_n = = 1
2024-04-26 12:15:30 +02:00
& & slot . n_prompt_tokens + slot . n_decoded > = n_ctx_train ) {
LOG_WARNING ( " n_predict is not set and self-context extend is disabled. "
" Limiting generated tokens to n_ctx_train to avoid EOS-less generation infinite loop " , {
{ " id_slot " , slot . id } ,
{ " params.n_predict " , slot . params . n_predict } ,
{ " slot.n_prompt_tokens " , slot . n_prompt_tokens } ,
{ " slot.n_decoded " , slot . n_decoded } ,
{ " slot.n_predict " , slot . n_predict } ,
{ " n_slots " , params . n_parallel } ,
{ " slot.n_ctx " , slot . n_ctx } ,
{ " n_ctx " , n_ctx } ,
{ " n_ctx_train " , n_ctx_train } ,
{ " ga_n " , slot . ga_n } ,
} ) ;
slot . truncated = true ;
slot . stopped_limit = true ;
slot . has_next_token = false ; // stop prediction
}
2023-10-22 21:53:08 +02:00
LOG_VERBOSE ( " next token " , {
2024-03-09 10:30:04 +01:00
{ " id_slot " , slot . id } ,
{ " id_task " , slot . id_task } ,
2024-03-07 10:41:53 +01:00
{ " token " , result . tok } ,
{ " token_text " , tokens_to_output_formatted_string ( ctx , result . tok ) } ,
{ " has_next_token " , slot . has_next_token } ,
{ " n_remain " , slot . n_remaining } ,
{ " n_decoded " , slot . n_decoded } ,
{ " stopped_eos " , slot . stopped_eos } ,
{ " stopped_word " , slot . stopped_word } ,
{ " stopped_limit " , slot . stopped_limit } ,
{ " stopping_word " , slot . stopping_word } ,
} ) ;
2023-10-22 21:53:08 +02:00
return slot . has_next_token ; // continue
}
2023-08-08 15:29:19 +02:00
2024-03-07 10:41:53 +01:00
json get_formated_generation ( const server_slot & slot ) const {
2024-06-04 20:23:39 +02:00
const auto eos_bias = slot . sparams . logit_bias . find ( llama_token_eos ( model ) ) ;
2024-03-07 10:41:53 +01:00
const bool ignore_eos = eos_bias ! = slot . sparams . logit_bias . end ( ) & & eos_bias - > second < 0.0f & & std : : isinf ( eos_bias - > second ) ;
2024-02-16 12:33:25 +01:00
std : : vector < std : : string > samplers_sequence ;
2024-03-07 10:41:53 +01:00
samplers_sequence . reserve ( slot . sparams . samplers_sequence . size ( ) ) ;
for ( const auto & sampler_type : slot . sparams . samplers_sequence ) {
2024-05-22 19:04:20 +02:00
samplers_sequence . emplace_back ( llama_sampling_type_to_str ( sampler_type ) ) ;
2024-02-16 12:33:25 +01:00
}
2023-10-22 21:53:08 +02:00
return json {
2024-03-07 10:41:53 +01:00
{ " n_ctx " , slot . n_ctx } ,
{ " n_predict " , slot . n_predict } ,
{ " model " , params . model_alias } ,
2024-05-19 16:06:33 +02:00
{ " seed " , slot . sparams . seed } ,
2024-03-07 10:41:53 +01:00
{ " temperature " , slot . sparams . temp } ,
{ " dynatemp_range " , slot . sparams . dynatemp_range } ,
{ " dynatemp_exponent " , slot . sparams . dynatemp_exponent } ,
{ " top_k " , slot . sparams . top_k } ,
{ " top_p " , slot . sparams . top_p } ,
{ " min_p " , slot . sparams . min_p } ,
{ " tfs_z " , slot . sparams . tfs_z } ,
{ " typical_p " , slot . sparams . typical_p } ,
{ " repeat_last_n " , slot . sparams . penalty_last_n } ,
{ " repeat_penalty " , slot . sparams . penalty_repeat } ,
{ " presence_penalty " , slot . sparams . penalty_present } ,
{ " frequency_penalty " , slot . sparams . penalty_freq } ,
{ " penalty_prompt_tokens " , slot . sparams . penalty_prompt_tokens } ,
2023-12-23 10:31:49 +01:00
{ " use_penalty_prompt_tokens " , slot . sparams . use_penalty_prompt_tokens } ,
2024-03-07 10:41:53 +01:00
{ " mirostat " , slot . sparams . mirostat } ,
{ " mirostat_tau " , slot . sparams . mirostat_tau } ,
{ " mirostat_eta " , slot . sparams . mirostat_eta } ,
{ " penalize_nl " , slot . sparams . penalize_nl } ,
{ " stop " , slot . params . antiprompt } ,
2024-03-13 18:54:21 +01:00
{ " n_predict " , slot . params . n_predict } , // TODO: fix duplicate key n_predict
2024-03-22 12:12:05 +01:00
{ " n_keep " , slot . params . n_keep } ,
2024-03-26 09:47:43 +01:00
{ " n_discard " , slot . params . n_discard } ,
2024-03-07 10:41:53 +01:00
{ " ignore_eos " , ignore_eos } ,
{ " stream " , slot . params . stream } ,
{ " logit_bias " , slot . sparams . logit_bias } ,
{ " n_probs " , slot . sparams . n_probs } ,
{ " min_keep " , slot . sparams . min_keep } ,
{ " grammar " , slot . sparams . grammar } ,
{ " samplers " , samplers_sequence }
2023-10-22 21:53:08 +02:00
} ;
}
2024-03-11 10:56:41 +01:00
void send_error ( const server_task & task , const std : : string & error , const enum error_type type = ERROR_TYPE_SERVER ) {
send_error ( task . id , task . id_multi , error , type ) ;
}
void send_error ( const server_slot & slot , const std : : string & error , const enum error_type type = ERROR_TYPE_SERVER ) {
send_error ( slot . id_task , slot . id_multi , error , type ) ;
}
void send_error ( const int id_task , const int id_multi , const std : : string & error , const enum error_type type = ERROR_TYPE_SERVER ) {
2024-04-12 13:49:21 +02:00
LOG_ERROR ( " task error " , {
{ " id_multi " , id_multi } ,
{ " id_task " , id_task } ,
{ " error " , error } ,
} ) ;
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
server_task_result res ;
2024-03-11 10:56:41 +01:00
res . id = id_task ;
res . id_multi = id_multi ;
2024-03-07 10:41:53 +01:00
res . stop = false ;
res . error = true ;
2024-03-11 10:56:41 +01:00
res . data = format_error_response ( error , type ) ;
2024-03-07 10:41:53 +01:00
queue_results . send ( res ) ;
}
void send_partial_response ( server_slot & slot , completion_token_output tkn ) {
server_task_result res ;
res . id = slot . id_task ;
res . id_multi = slot . id_multi ;
res . error = false ;
res . stop = false ;
res . data = json {
2023-10-22 21:53:08 +02:00
{ " content " , tkn . text_to_send } ,
{ " stop " , false } ,
2024-03-07 10:41:53 +01:00
{ " id_slot " , slot . id } ,
{ " multimodal " , false }
2023-10-22 21:53:08 +02:00
} ;
2024-03-07 10:41:53 +01:00
if ( slot . sparams . n_probs > 0 ) {
2023-10-22 21:53:08 +02:00
const std : : vector < llama_token > to_send_toks = llama_tokenize ( ctx , tkn . text_to_send , false ) ;
2024-03-07 10:41:53 +01:00
const size_t probs_pos = std : : min ( slot . n_sent_token_probs , slot . generated_token_probs . size ( ) ) ;
const size_t probs_stop_pos = std : : min ( slot . n_sent_token_probs + to_send_toks . size ( ) , slot . generated_token_probs . size ( ) ) ;
std : : vector < completion_token_output > probs_output ;
if ( probs_pos < probs_stop_pos ) {
probs_output = std : : vector < completion_token_output > (
slot . generated_token_probs . begin ( ) + probs_pos ,
slot . generated_token_probs . begin ( ) + probs_stop_pos ) ;
2023-07-02 23:38:44 +02:00
}
2024-02-29 21:42:11 +01:00
slot . n_sent_token_probs = probs_stop_pos ;
2024-03-07 10:41:53 +01:00
res . data [ " completion_probabilities " ] = probs_vector_to_json ( ctx , probs_output ) ;
2023-10-22 21:53:08 +02:00
}
2023-08-08 15:29:19 +02:00
2024-03-07 10:41:53 +01:00
if ( slot . oaicompat ) {
res . data [ " oaicompat_token_ctr " ] = slot . n_decoded ;
res . data [ " model " ] = slot . oaicompat_model ;
2023-11-25 10:29:06 +01:00
}
2024-01-26 13:42:20 +01:00
queue_results . send ( res ) ;
2023-10-22 21:53:08 +02:00
}
2024-03-07 10:41:53 +01:00
void send_final_response ( const server_slot & slot ) {
server_task_result res ;
res . id = slot . id_task ;
res . id_multi = slot . id_multi ;
res . error = false ;
res . stop = true ;
res . data = json {
2023-10-22 21:53:08 +02:00
{ " content " , ! slot . params . stream ? slot . generated_text : " " } ,
2024-03-07 10:41:53 +01:00
{ " id_slot " , slot . id } ,
2023-10-22 21:53:08 +02:00
{ " stop " , true } ,
{ " model " , params . model_alias } ,
{ " tokens_predicted " , slot . n_decoded } ,
2024-02-29 21:42:11 +01:00
{ " tokens_evaluated " , slot . n_prompt_tokens } ,
2023-10-22 21:53:08 +02:00
{ " generation_settings " , get_formated_generation ( slot ) } ,
{ " prompt " , slot . prompt } ,
{ " truncated " , slot . truncated } ,
{ " stopped_eos " , slot . stopped_eos } ,
{ " stopped_word " , slot . stopped_word } ,
{ " stopped_limit " , slot . stopped_limit } ,
{ " stopping_word " , slot . stopping_word } ,
{ " tokens_cached " , slot . n_past } ,
{ " timings " , slot . get_formated_timings ( ) }
} ;
2024-03-07 10:41:53 +01:00
if ( slot . sparams . n_probs > 0 ) {
std : : vector < completion_token_output > probs ;
if ( ! slot . params . stream & & slot . stopped_word ) {
2023-10-22 21:53:08 +02:00
const std : : vector < llama_token > stop_word_toks = llama_tokenize ( ctx , slot . stopping_word , false ) ;
2024-03-07 10:41:53 +01:00
2024-05-04 11:06:40 +02:00
size_t safe_offset = std : : min ( slot . generated_token_probs . size ( ) , stop_word_toks . size ( ) ) ;
2023-10-22 21:53:08 +02:00
probs = std : : vector < completion_token_output > (
2024-03-07 10:41:53 +01:00
slot . generated_token_probs . begin ( ) ,
2024-05-04 11:06:40 +02:00
slot . generated_token_probs . end ( ) - safe_offset ) ;
2024-03-07 10:41:53 +01:00
} else {
probs = std : : vector < completion_token_output > (
slot . generated_token_probs . begin ( ) ,
slot . generated_token_probs . end ( ) ) ;
2023-10-05 16:02:55 +02:00
}
2024-03-07 10:41:53 +01:00
res . data [ " completion_probabilities " ] = probs_vector_to_json ( ctx , probs ) ;
2023-05-21 19:51:18 +02:00
}
2024-03-07 10:41:53 +01:00
if ( slot . oaicompat ) {
res . data [ " oaicompat_token_ctr " ] = slot . n_decoded ;
res . data [ " model " ] = slot . oaicompat_model ;
2023-11-25 10:29:06 +01:00
}
2024-01-26 13:42:20 +01:00
queue_results . send ( res ) ;
2023-10-22 21:53:08 +02:00
}
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-03-07 10:41:53 +01:00
void send_embedding ( const server_slot & slot , const llama_batch & batch ) {
server_task_result res ;
res . id = slot . id_task ;
res . id_multi = slot . id_multi ;
res . error = false ;
res . stop = true ;
2023-10-22 21:53:08 +02:00
const int n_embd = llama_n_embd ( model ) ;
2024-03-04 21:31:20 +01:00
2024-03-09 13:27:58 +01:00
std : : vector < float > embd_res ( n_embd , 0.0f ) ;
2024-03-07 10:41:53 +01:00
for ( int i = 0 ; i < batch . n_tokens ; + + i ) {
llama : support Mamba Selective State Space Models (#5328)
* mamba : begin working on support for Mamba SSM
* mamba : begin figuring out how to (ab)use the kv cache for Mamba
* mamba : recurrent inference almost works, but incoherent
* mamba : recurrent inference WORKS!!!
* convert : optionally use d_conv and d_state from config.json for Mamba
* mamba : refactor recurrent conv, resulting in 20% perf increase
It's still slower than I'd like, but I did not really optimize `ggml_exp` yet.
I also refactored `ggml_exp` to work with tensors with more than 2 dimensions.
* ggml : parallelize ggml_exp
This results in 8% faster token generation for Mamba-130M.
* mamba : simplify the conv step with a self-overlapping view
Turns out the conv_state can be made smaller by one column.
Note that this breaks existing GGUFs of Mamba,
because the key_value_length field is tied to the conv_state size.
Convolution with a self-overlapping view is cool!
And it's much simpler than what I initially thought would be necessary
to make the convolution step work with more than 1 token at a time.
Next step is to make the SSM step work on batches of tokens too,
and thus I need to figure out a way to make a parallel selective scan
which will keep the ssm_state small and won't make it bigger
by a factor of (n_layer * batch_size).
* llama : fix Mamba KV self size wrongly displaying as f16 instead of f32
Relatedly, I also tried to see if other types than f32 worked for the states,
but they don't, because of the operators used.
It's probably better anyway to keep lots of precision there,
since the states are small anyway.
* mamba : fix self-overlapping view depth stride
* mamba : handle batches of more than 1 token
This means running Mamba no longer crashes when using the default settings!
And probably also slightly faster prompt processing.
Both batched and non-batched processing yield the same output.
Previously, the state was not cleared when starting a sequence.
Next step is to make the KV cache API work as expected for Mamba models.
* ggml: add ggml_ssm_scan to help with parallel selective scan
If the selective scan was implemented without a custom operator,
there would be waaay too many nodes in the graph. For example,
for Mamba-130M, with a batch size of 512 (the default),
a naive selective scan could add at least 24*512=12288 nodes,
which is more than LLAMA_MAX_NODES (8192),
and that's only for the smallest Mamba model.
So it's much cleaner with a custom operator.
Not sure about the name, though.
* ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation
This will help with performance on CPU if ggml_vec_mul_f32
and ggml_vec_add_f32 are ever optimized with SIMD.
* mamba : very basic quantization support
Mostly works, but there is currently no difference
between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same).
Most of the SSM-specific weights can be kept in f32 without affecting
the size that much, since they are relatively small.
(the linear projection weights are responsible for most of Mamba's size)
Too much quantization seems to make the state degrade quite fast, and
the model begins to output gibberish.
It seems to affect bigger models to a lesser extent than small models,
but I'm not sure by how much.
Experimentation will be needed to figure out which weights are more important
for the _M (and _L?) variants of k-quants for Mamba.
* convert : fix wrong name for layer norm weight of offical Mamba models
I was using Q-bert/Mamba-* models before, which have a slighlty different
naming scheme for the weights.
(they start with "model.layers" instead of "backbone.layers")
* mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator
This increases performance on CPU by around 30% for prompt processing,
and by around 20% for text generation.
However, it also makes the ggml_exp and ggml_soft_plus operators unused.
Whether or not they should be kept will be decided later.
* convert : for Mamba, also consider the "MambaLMHeadModel" arch name
It's the name of the class of the official implementation,
though they don't use it (yet) in the "architectures" field of config.json
* mamba : fix vocab size problems with official models
The perplexity was waaaay to high for models with a non-round vocab size.
Not sure why, but it needed to be fixed in the metadata.
Note that this breaks existing GGUF-converted Mamba models,
but **only if** the vocab size was not already rounded.
* ggml : remove ggml_exp and ggml_soft_plus
They did not exist anyway outside of this branch,
and since ggml_ssm_scan fused operations together, they are unused.
It's always possible to bring them back if needed.
* mamba : remove some useless comments
No code change.
* convert : fix flake8 linter errors
* mamba : apply suggestions from code review
* mamba : remove unecessary branch for row-wise ssm_state and C multiplication
It was previously done to avoid permuting when only one token is processed
at a time (like when generating text), but permuting is cheap,
and dynamically changing the compute graph is not future-proof.
* ggml : in ggml_ssm_scan, use more appropriate asserts
* ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32
* mamba : multiple sequences, but one at a time
This is a step towards making this Mamba implementation usable
with the server example (the way the system prompt is kept when clearing
the client slots will need to be changed before this can work, though).
The KV cache size for this kind of model is tied to the maximum number
of sequences kept at any single time.
For now, this number is obtained from n_parallel (plus one,
to have an extra sequence to dedicate to the system prompt),
but there might be a better way to do this which won't also
make the main example use 2 cells even if only 1 is really used.
(for this specific case, --parallel 0 helps)
Simultaneous sequence processing will probably require changes to
ggml_ssm_scan, and possibly a new operator for the conv step.
* mamba : support llama_kv_cache_seq_cp
This (mis)uses the logic around K shifts, because tokens in a state
can't be shifted anyway, and because inp_K_shift has the right shape and type.
Using ggml_get_rows is a nice way to do copies, but copy chains can't work.
Fortunately, copy chains don't really seem to be used in the examples.
Each KV cell is dedicated to the sequence ID corresponding to its own index.
* mamba : use a state mask
It's cleaner than the previous heuristic of
checking for the pos of the first token in the batch.
inp_KQ_mask could not be re-used for this, because it has the wrong shape
and because it seems more suited to the next step of
simultaneous sequence processing (helping with the problem of
remembering which token belongs to which sequence(s)/state(s)).
* llama : replace the usage of n_ctx with kv_self.size in many places
* mamba : use n_tokens directly instead of n_tok
* mamba : in comments, properly refer to KV cells instead of slots
* mamba : reduce memory usage of ggml_ssm_scan
From 290.37 MiB to 140.68 MiB of CPU compute buffer size
with Mamba 3B with a batch size of 512.
The result tensor of ggml_ssm_scan was previously a big part
of the CPU compute buffer size. To make it smaller,
it does not contain the intermediate ssm states anymore.
Both y and the last ssm state are combined in the result tensor,
because it seems only a single tensor can be returned by an operator
with the way the graph is built.
* mamba : simultaneous sequence processing
A batch can now contain tokens from multiple sequences.
This is necessary for at least the parallel example, the server example,
and the HellaSwag test in the perplexity example.
However, for this to be useful, uses of llama_kv_cache_seq_rm/cp
will need to be changed to work on whole sequences.
* ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba
This operator makes it possible to use and update the correct states
for each token of the batch in the same way as ggml_ssm_scan.
Other solutions which use existing operators would need loops which would
add too many nodes to the graph (at least the ones I thought of).
Using this operator further reduces the size of the CPU compute buffer
from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512.
And (at least on CPU), it's a bit faster than before.
Note that "ggml_ssm_conv" is probably not the most appropriate name,
and it could be changed if a better one is found.
* llama : add inp_s_seq as a new input tensor
The most convenient implementation to select the correct state (for Mamba)
for each token is to directly get the correct index from a tensor.
This is why inp_s_seq is storing int32_t and not floats.
The other, less convenient way to select the correct state would be
to have inp_KQ_mask contain 1.0f for each state used by a token
and 0.0f otherwise. This complicates quickly fetching the first used
state of a token, and is also less efficient because a whole row
of the mask would always need to be read for each token.
Using indexes makes it easy to stop searching when there are
no more sequences for a token, and the first sequence assigned
is always very quickly available (it's the first element of each row).
* mamba : support llama_kv_cache_seq_cp copy chains
* mamba : support shifting and dividing the kv cache pos
* mamba : make the server and parallel examples work with whole sequences
A seq_id is dedicated to the system prompt in both cases.
* llama : make llama_kv_cache_seq_rm return whether it succeeded or not
* mamba : dedicate an input tensor for state copy indices
This is cleaner and makes it easier to adapt when/if token positions
(and by extension, inp_K_shift) are no longer integers.
* mamba : adapt perplexity, batched, and batched-bench examples
* perplexity : limit the max number of sequences
This adapts to what the loaded model can provide.
* llama : add llama_n_max_seq to get the upper limit for seq_ids
Used by the perplexity example.
* batched : pass n_parallel to the model's context params
This should have been there already, but it wasn't.
* batched-bench : reserve sequences to support Mamba
* batched-bench : fix tokens being put in wrong sequences
Generation quality isn't what's measured in there anyway,
but at least using the correct sequences avoids using non-consecutive
token positions.
* mamba : stop abusing attention metadata
This breaks existing converted-to-GGUF Mamba models,
but will allow supporting mixed architectures like MambaFormer
without needing to break Mamba models.
This will also allow changing the size of Mamba's states
without having to reconvert models in the future.
(e.g. using something else than d_conv - 1 columns for the conv_states
will not require breaking existing converted Mamba models again)
* gguf-py : add new KV metadata key-value pairs for Mamba
* llama : add new metadata key-value pairs for Mamba
* llama : guard against divisions by zero when n_head is 0
* mamba : rename "unlimited" KV cache property to "recurrent"
* mamba : more correctly update the "used" field of the KV cache
* ggml : in ggml_ssm_scan, use a threshold for soft_plus
This is how the official Mamba implementation does it,
and it's also what torch.nn.Softplus does.
* convert : for Mamba, fallback to internal NeoX tokenizer
The resulting models are exactly the same
as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there.
* mamba : support state saving and restoring
* ggml : implicitly pass src tensors through dst for Mamba-related ops
* mamba : clarify some comments
* server : fix cache_tokens not getting correctly resized
Otherwise, when the "we have to evaluate at least 1 token" special case
was triggered, an extra token was kept in cache_tokens even if it was
removed from the KV cache.
For Mamba, this caused useless prompt reprocessing when the previous
request triggered the above case.
* convert-hf : support new metadata keys for Mamba
For the models available at
https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406
* mamba : rename metadata to be more similar to transformers library
This breaks existing converted-to-GGUF models,
but the metadata names are more "standard".
* mamba : support mamba-*-hf models
These models share their token_embd.weight with their output.weight
* mamba : add missing spaces
This is purely a formatting change.
* convert-hf : omit output.weight when identical with token_embd.weight
Only for Mamba for now, but it might be relevant for other models eventually.
Most Mamba models actually share these two tensors, albeit implicitly.
* readme : add Mamba to supported models, and add recent API changes
* mamba : move state_seq and state_mask views outside layer loop
A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 23:31:00 +01:00
if ( ! batch . logits [ i ] | | batch . seq_id [ i ] [ 0 ] ! = slot . id + 1 ) {
2024-03-07 10:41:53 +01:00
continue ;
}
2024-03-04 21:31:20 +01:00
2024-03-07 10:41:53 +01:00
const float * embd = llama_get_embeddings_seq ( ctx , batch . seq_id [ i ] [ 0 ] ) ;
if ( embd = = NULL ) {
embd = llama_get_embeddings_ith ( ctx , i ) ;
}
2024-03-04 21:31:20 +01:00
2024-03-07 10:41:53 +01:00
if ( embd = = NULL ) {
LOG_ERROR ( " failed to get embeddings " , {
{ " token " , batch . token [ i ] } ,
{ " seq_id " , batch . seq_id [ i ] [ 0 ] }
} ) ;
res . data = json {
{ " embedding " , std : : vector < float > ( n_embd , 0.0f ) } ,
2024-03-04 21:31:20 +01:00
} ;
2024-03-07 10:41:53 +01:00
continue ;
2024-03-04 21:31:20 +01:00
}
2024-03-07 10:41:53 +01:00
2024-03-09 13:27:58 +01:00
llama_embd_normalize ( embd , embd_res . data ( ) , n_embd ) ;
2024-03-07 10:41:53 +01:00
res . data = json {
2024-03-09 13:27:58 +01:00
{ " embedding " , embd_res } ,
2024-03-07 10:41:53 +01:00
} ;
2023-05-21 19:51:18 +02:00
}
2024-03-07 10:41:53 +01:00
2024-01-26 13:42:20 +01:00
queue_results . send ( res ) ;
2023-10-22 21:53:08 +02:00
}
2023-05-21 19:51:18 +02:00
2024-03-07 10:41:53 +01:00
void request_completion ( int id_task , int id_multi , json data , bool infill , bool embedding ) {
server_task task ;
task . id = id_task ;
task . id_multi = id_multi ;
task . id_target = 0 ;
task . data = std : : move ( data ) ;
task . infill = infill ;
task . embedding = embedding ;
task . type = SERVER_TASK_TYPE_COMPLETION ;
2023-11-30 23:25:04 +01:00
// when a completion task's prompt array is not a singleton, we split it into multiple requests
// otherwise, it's a single-prompt task, we actually queue it
2024-02-06 09:16:23 +01:00
// if there's numbers in the prompt array it will be treated as an array of tokens
if ( task . data . count ( " prompt " ) ! = 0 & & task . data . at ( " prompt " ) . size ( ) > 1 ) {
bool numbers = false ;
2024-03-07 10:41:53 +01:00
for ( const auto & e : task . data . at ( " prompt " ) ) {
2024-02-06 09:16:23 +01:00
if ( e . is_number ( ) ) {
numbers = true ;
break ;
}
}
// NOTE: split_multiprompt_task() does not handle a mix of strings and numbers,
// it will completely stall the server. I don't know where the bug for this is.
//
// if there are numbers, it needs to be treated like a single prompt,
// queue_tasks handles a mix of strings and numbers just fine.
if ( numbers ) {
queue_tasks . post ( task ) ;
} else {
2024-03-07 10:41:53 +01:00
split_multiprompt_task ( id_task , task ) ;
2024-02-06 09:16:23 +01:00
}
} else {
queue_tasks . post ( task ) ;
}
2023-10-22 21:53:08 +02:00
}
2024-03-07 10:41:53 +01:00
void request_cancel ( int id_task ) {
server_task task ;
task . type = SERVER_TASK_TYPE_CANCEL ;
task . id_target = id_task ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-01-26 13:42:20 +01:00
queue_tasks . post ( task ) ;
2023-10-22 21:53:08 +02:00
}
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-03-07 10:41:53 +01:00
void split_multiprompt_task ( int id_multi , const server_task & multiprompt_task ) {
const int prompt_count = multiprompt_task . data . at ( " prompt " ) . size ( ) ;
2024-02-06 09:16:23 +01:00
if ( prompt_count < = 1 ) {
send_error ( multiprompt_task , " error while handling multiple prompts " ) ;
return ;
}
2023-11-30 23:25:04 +01:00
2024-01-26 13:42:20 +01:00
// generate all the ID for subtask
2023-11-30 23:25:04 +01:00
std : : vector < int > subtask_ids ( prompt_count ) ;
2024-03-07 10:41:53 +01:00
for ( int i = 0 ; i < prompt_count ; i + + ) {
2024-01-26 13:42:20 +01:00
subtask_ids [ i ] = queue_tasks . get_new_id ( ) ;
}
// queue up the multitask so we can track its subtask progression
2024-03-07 10:41:53 +01:00
queue_tasks . add_multitask ( id_multi , subtask_ids ) ;
2024-01-26 13:42:20 +01:00
// add subtasks
2024-03-07 10:41:53 +01:00
for ( int i = 0 ; i < prompt_count ; i + + ) {
2023-11-30 23:25:04 +01:00
json subtask_data = multiprompt_task . data ;
2024-05-08 21:53:08 +02:00
subtask_data [ " prompt " ] = subtask_data . at ( " prompt " ) [ i ] ;
2023-11-30 23:25:04 +01:00
// subtasks inherit everything else (infill mode, embedding mode, etc.)
2024-03-07 10:41:53 +01:00
request_completion ( subtask_ids [ i ] , id_multi , subtask_data , multiprompt_task . infill , multiprompt_task . embedding ) ;
2023-11-30 23:25:04 +01:00
}
}
2024-03-07 10:41:53 +01:00
void process_single_task ( const server_task & task ) {
switch ( task . type ) {
case SERVER_TASK_TYPE_COMPLETION :
2024-01-26 13:42:20 +01:00
{
2024-03-07 10:41:53 +01:00
server_slot * slot = get_slot ( json_value ( task . data , " id_slot " , - 1 ) ) ;
if ( slot = = nullptr ) {
// if no slot is available, we defer this task for processing later
LOG_VERBOSE ( " no slot is available " , { { " id_task " , task . id } } ) ;
queue_tasks . defer ( task ) ;
2024-01-13 18:31:26 +01:00
break ;
2023-10-22 21:53:08 +02:00
}
2024-03-07 10:41:53 +01:00
if ( task . data . contains ( " system_prompt " ) ) {
2024-05-11 17:28:10 +02:00
std : : string sys_prompt = json_value ( task . data , " system_prompt " , std : : string ( ) ) ;
system_prompt_set ( sys_prompt ) ;
2024-03-07 10:41:53 +01:00
for ( server_slot & slot : slots ) {
slot . n_past = 0 ;
slot . n_past_se = 0 ;
}
2023-10-22 21:53:08 +02:00
}
2024-03-07 10:41:53 +01:00
slot - > reset ( ) ;
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
slot - > id_task = task . id ;
slot - > id_multi = task . id_multi ;
slot - > infill = task . infill ;
slot - > embedding = task . embedding ;
2023-10-22 21:53:08 +02:00
2024-03-11 10:56:41 +01:00
if ( ! launch_slot_with_task ( * slot , task ) ) {
LOG_ERROR ( " error while launching slot " , task . data ) ;
2023-10-22 21:53:08 +02:00
break ;
}
2024-03-07 10:41:53 +01:00
} break ;
case SERVER_TASK_TYPE_CANCEL :
{
// release slot linked with the task id
for ( auto & slot : slots ) {
if ( slot . id_task = = task . id_target ) {
slot . release ( ) ;
break ;
}
2024-02-24 12:28:55 +01:00
}
2024-03-07 10:41:53 +01:00
} break ;
case SERVER_TASK_TYPE_NEXT_RESPONSE :
{
// do nothing
} break ;
case SERVER_TASK_TYPE_METRICS :
{
json slots_data = json : : array ( ) ;
int n_idle_slots = 0 ;
int n_processing_slots = 0 ;
for ( server_slot & slot : slots ) {
json slot_data = get_formated_generation ( slot ) ;
slot_data [ " id " ] = slot . id ;
slot_data [ " id_task " ] = slot . id_task ;
slot_data [ " state " ] = slot . state ;
slot_data [ " prompt " ] = slot . prompt ;
slot_data [ " next_token " ] = {
{ " has_next_token " , slot . has_next_token } ,
{ " n_remain " , slot . n_remaining } ,
{ " n_decoded " , slot . n_decoded } ,
{ " stopped_eos " , slot . stopped_eos } ,
{ " stopped_word " , slot . stopped_word } ,
{ " stopped_limit " , slot . stopped_limit } ,
{ " stopping_word " , slot . stopping_word } ,
} ;
if ( slot_data [ " state " ] = = SLOT_STATE_IDLE ) {
n_idle_slots + + ;
} else {
n_processing_slots + + ;
}
slots_data . push_back ( slot_data ) ;
}
LOG_INFO ( " slot data " , {
{ " id_task " , task . id } ,
{ " n_idle_slots " , n_idle_slots } ,
{ " n_processing_slots " , n_processing_slots }
} ) ;
LOG_VERBOSE ( " slot data " , {
{ " id_task " , task . id } ,
{ " n_idle_slots " , n_idle_slots } ,
{ " n_processing_slots " , n_processing_slots } ,
{ " slots " , slots_data }
} ) ;
server_task_result res ;
res . id = task . id ;
res . id_multi = task . id_multi ;
res . stop = true ;
res . error = false ;
res . data = {
2024-02-25 13:49:43 +01:00
{ " idle " , n_idle_slots } ,
{ " processing " , n_processing_slots } ,
{ " deferred " , queue_tasks . queue_tasks_deferred . size ( ) } ,
2024-03-08 12:25:04 +01:00
{ " t_start " , metrics . t_start } ,
2024-02-25 13:49:43 +01:00
{ " n_prompt_tokens_processed_total " , metrics . n_prompt_tokens_processed_total } ,
2024-03-08 12:25:04 +01:00
{ " t_tokens_generation_total " , metrics . t_tokens_generation_total } ,
2024-02-25 13:49:43 +01:00
{ " n_tokens_predicted_total " , metrics . n_tokens_predicted_total } ,
2024-03-08 12:25:04 +01:00
{ " t_prompt_processing_total " , metrics . t_prompt_processing_total } ,
2024-02-25 13:49:43 +01:00
{ " n_prompt_tokens_processed " , metrics . n_prompt_tokens_processed } ,
{ " t_prompt_processing " , metrics . t_prompt_processing } ,
{ " n_tokens_predicted " , metrics . n_tokens_predicted } ,
{ " t_tokens_generation " , metrics . t_tokens_generation } ,
2024-02-29 21:42:11 +01:00
{ " kv_cache_tokens_count " , llama_get_kv_cache_token_count ( ctx ) } ,
{ " kv_cache_used_cells " , llama_get_kv_cache_used_cells ( ctx ) } ,
2024-02-25 13:49:43 +01:00
2024-02-29 21:42:11 +01:00
{ " slots " , slots_data } ,
2024-03-07 10:41:53 +01:00
} ;
2024-03-08 12:25:04 +01:00
if ( json_value ( task . data , " reset_bucket " , false ) ) {
metrics . reset_bucket ( ) ;
}
2024-03-07 10:41:53 +01:00
queue_results . send ( res ) ;
} break ;
2024-04-08 14:43:30 +02:00
case SERVER_TASK_TYPE_SLOT_SAVE :
{
2024-05-08 21:53:08 +02:00
int id_slot = task . data . at ( " id_slot " ) ;
2024-04-08 14:43:30 +02:00
server_slot * slot = get_slot ( id_slot ) ;
if ( slot = = nullptr ) {
send_error ( task , " Invalid slot ID " , ERROR_TYPE_INVALID_REQUEST ) ;
break ;
}
const size_t token_count = slot - > cache_tokens . size ( ) ;
const int64_t t_start = ggml_time_us ( ) ;
2024-05-08 21:53:08 +02:00
std : : string filename = task . data . at ( " filename " ) ;
std : : string filepath = task . data . at ( " filepath " ) ;
2024-04-08 14:43:30 +02:00
const size_t nwrite = llama_state_seq_save_file ( ctx , filepath . c_str ( ) , slot - > id + 1 , slot - > cache_tokens . data ( ) , token_count ) ;
const int64_t t_end = ggml_time_us ( ) ;
const double t_save_ms = ( t_end - t_start ) / 1000.0 ;
server_task_result result ;
result . id = task . id ;
result . stop = true ;
result . error = false ;
result . data = json {
{ " id_slot " , id_slot } ,
{ " filename " , filename } ,
{ " n_saved " , token_count } , // tokens saved
{ " n_written " , nwrite } , // bytes written
{ " timings " , {
{ " save_ms " , t_save_ms }
} }
} ;
queue_results . send ( result ) ;
} break ;
case SERVER_TASK_TYPE_SLOT_RESTORE :
{
2024-05-08 21:53:08 +02:00
int id_slot = task . data . at ( " id_slot " ) ;
2024-04-08 14:43:30 +02:00
server_slot * slot = get_slot ( id_slot ) ;
if ( slot = = nullptr ) {
send_error ( task , " Invalid slot ID " , ERROR_TYPE_INVALID_REQUEST ) ;
break ;
}
const int64_t t_start = ggml_time_us ( ) ;
2024-05-08 21:53:08 +02:00
std : : string filename = task . data . at ( " filename " ) ;
std : : string filepath = task . data . at ( " filepath " ) ;
2024-04-08 14:43:30 +02:00
slot - > cache_tokens . resize ( slot - > n_ctx ) ;
size_t token_count = 0 ;
size_t nread = llama_state_seq_load_file ( ctx , filepath . c_str ( ) , slot - > id + 1 , slot - > cache_tokens . data ( ) , slot - > cache_tokens . size ( ) , & token_count ) ;
if ( nread = = 0 ) {
slot - > cache_tokens . resize ( 0 ) ;
send_error ( task , " Unable to restore slot, no available space in KV cache or invalid slot save file " , ERROR_TYPE_INVALID_REQUEST ) ;
break ;
}
slot - > cache_tokens . resize ( token_count ) ;
const int64_t t_end = ggml_time_us ( ) ;
const double t_restore_ms = ( t_end - t_start ) / 1000.0 ;
server_task_result result ;
result . id = task . id ;
result . stop = true ;
result . error = false ;
result . data = json {
{ " id_slot " , id_slot } ,
{ " filename " , filename } ,
{ " n_restored " , token_count } , // tokens restored
{ " n_read " , nread } , // bytes read
{ " timings " , {
{ " restore_ms " , t_restore_ms }
} }
} ;
queue_results . send ( result ) ;
} break ;
case SERVER_TASK_TYPE_SLOT_ERASE :
{
2024-05-08 21:53:08 +02:00
int id_slot = task . data . at ( " id_slot " ) ;
2024-04-08 14:43:30 +02:00
server_slot * slot = get_slot ( id_slot ) ;
if ( slot = = nullptr ) {
send_error ( task , " Invalid slot ID " , ERROR_TYPE_INVALID_REQUEST ) ;
break ;
}
// Erase token cache
const size_t n_erased = slot - > cache_tokens . size ( ) ;
llama_kv_cache_seq_rm ( ctx , slot - > id + 1 , - 1 , - 1 ) ;
slot - > cache_tokens . clear ( ) ;
server_task_result result ;
result . id = task . id ;
result . stop = true ;
result . error = false ;
result . data = json {
{ " id_slot " , id_slot } ,
{ " n_erased " , n_erased }
} ;
queue_results . send ( result ) ;
} break ;
2023-07-02 23:38:44 +02:00
}
2024-01-26 13:42:20 +01:00
}
2023-11-30 23:25:04 +01:00
2024-03-07 10:41:53 +01:00
void on_finish_multitask ( const server_task_multi & multitask ) {
2024-01-26 13:42:20 +01:00
// all subtasks done == multitask is done
2024-03-07 10:41:53 +01:00
server_task_result result ;
result . id = multitask . id ;
result . stop = true ;
2024-01-26 13:42:20 +01:00
result . error = false ;
2024-01-18 21:33:05 +01:00
2024-01-26 13:42:20 +01:00
// collect json results into one json result
std : : vector < json > result_jsons ;
2024-03-07 10:41:53 +01:00
for ( const auto & subres : multitask . results ) {
result_jsons . push_back ( subres . data ) ;
2024-01-26 13:42:20 +01:00
result . error = result . error & & subres . error ;
2023-11-30 23:25:04 +01:00
}
2024-03-07 10:41:53 +01:00
result . data = json {
{ " results " , result_jsons }
} ;
2024-01-26 13:42:20 +01:00
queue_results . send ( result ) ;
2023-10-22 21:53:08 +02:00
}
2023-07-02 23:38:44 +02:00
2024-03-11 10:56:41 +01:00
void update_slots ( ) {
2024-03-07 10:41:53 +01:00
if ( system_need_update ) {
2024-02-29 21:42:11 +01:00
system_prompt_update ( ) ;
2023-07-05 22:51:13 +02:00
}
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
// release slots
for ( auto & slot : slots ) {
if ( slot . command = = SLOT_COMMAND_RELEASE ) {
slot . state = SLOT_STATE_IDLE ;
slot . command = SLOT_COMMAND_NONE ;
slot . t_last_used = ggml_time_us ( ) ;
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
LOG_INFO ( " slot released " , {
{ " id_slot " , slot . id } ,
{ " id_task " , slot . id_task } ,
{ " n_ctx " , n_ctx } ,
{ " n_past " , slot . n_past } ,
{ " n_system_tokens " , system_tokens . size ( ) } ,
{ " n_cache_tokens " , slot . cache_tokens . size ( ) } ,
{ " truncated " , slot . truncated }
} ) ;
queue_tasks . notify_slot_changed ( ) ;
2023-07-05 22:51:13 +02:00
}
2023-10-22 21:53:08 +02:00
}
2024-03-07 10:41:53 +01:00
// check if all slots are idle
{
bool all_idle = true ;
for ( auto & slot : slots ) {
if ( slot . state ! = SLOT_STATE_IDLE | | slot . command ! = SLOT_COMMAND_NONE ) {
all_idle = false ;
break ;
}
}
if ( all_idle ) {
LOG_INFO ( " all slots are idle " , { } ) ;
if ( system_prompt . empty ( ) & & clean_kv_cache ) {
kv_cache_clear ( ) ;
}
2024-03-11 10:56:41 +01:00
return ;
2024-03-07 10:41:53 +01:00
}
}
2024-01-30 19:17:30 +01:00
2023-10-22 21:53:08 +02:00
{
2024-03-07 10:41:53 +01:00
LOG_VERBOSE ( " posting NEXT_RESPONSE " , { } ) ;
server_task task ;
task . type = SERVER_TASK_TYPE_NEXT_RESPONSE ;
task . id_target = - 1 ;
queue_tasks . post ( task ) ;
}
// apply context-shift if needed
// TODO: simplify and improve
for ( server_slot & slot : slots ) {
if ( slot . ga_n = = 1 ) {
if ( slot . is_processing ( ) & & ( int ) system_tokens . size ( ) + slot . n_past > = slot . n_ctx - 1 ) {
2024-01-27 14:38:05 +01:00
// Shift context
2024-02-21 16:33:54 +01:00
const int n_keep = slot . params . n_keep + add_bos_token ;
2024-02-25 13:50:32 +01:00
const int n_left = ( int ) system_tokens . size ( ) + slot . n_past - n_keep ;
2024-03-26 09:47:43 +01:00
const int n_discard = slot . params . n_discard ? slot . params . n_discard : ( n_left / 2 ) ;
2023-10-22 21:53:08 +02:00
2024-02-25 13:50:32 +01:00
LOG_INFO ( " slot context shift " , {
2024-03-07 10:41:53 +01:00
{ " id_slot " , slot . id } ,
{ " id_task " , slot . id_task } ,
2024-02-25 13:50:32 +01:00
{ " n_keep " , n_keep } ,
{ " n_left " , n_left } ,
{ " n_discard " , n_discard } ,
{ " n_ctx " , n_ctx } ,
{ " n_past " , slot . n_past } ,
{ " n_system_tokens " , system_tokens . size ( ) } ,
{ " n_cache_tokens " , slot . cache_tokens . size ( ) }
} ) ;
2024-03-07 10:41:53 +01:00
llama : support Mamba Selective State Space Models (#5328)
* mamba : begin working on support for Mamba SSM
* mamba : begin figuring out how to (ab)use the kv cache for Mamba
* mamba : recurrent inference almost works, but incoherent
* mamba : recurrent inference WORKS!!!
* convert : optionally use d_conv and d_state from config.json for Mamba
* mamba : refactor recurrent conv, resulting in 20% perf increase
It's still slower than I'd like, but I did not really optimize `ggml_exp` yet.
I also refactored `ggml_exp` to work with tensors with more than 2 dimensions.
* ggml : parallelize ggml_exp
This results in 8% faster token generation for Mamba-130M.
* mamba : simplify the conv step with a self-overlapping view
Turns out the conv_state can be made smaller by one column.
Note that this breaks existing GGUFs of Mamba,
because the key_value_length field is tied to the conv_state size.
Convolution with a self-overlapping view is cool!
And it's much simpler than what I initially thought would be necessary
to make the convolution step work with more than 1 token at a time.
Next step is to make the SSM step work on batches of tokens too,
and thus I need to figure out a way to make a parallel selective scan
which will keep the ssm_state small and won't make it bigger
by a factor of (n_layer * batch_size).
* llama : fix Mamba KV self size wrongly displaying as f16 instead of f32
Relatedly, I also tried to see if other types than f32 worked for the states,
but they don't, because of the operators used.
It's probably better anyway to keep lots of precision there,
since the states are small anyway.
* mamba : fix self-overlapping view depth stride
* mamba : handle batches of more than 1 token
This means running Mamba no longer crashes when using the default settings!
And probably also slightly faster prompt processing.
Both batched and non-batched processing yield the same output.
Previously, the state was not cleared when starting a sequence.
Next step is to make the KV cache API work as expected for Mamba models.
* ggml: add ggml_ssm_scan to help with parallel selective scan
If the selective scan was implemented without a custom operator,
there would be waaay too many nodes in the graph. For example,
for Mamba-130M, with a batch size of 512 (the default),
a naive selective scan could add at least 24*512=12288 nodes,
which is more than LLAMA_MAX_NODES (8192),
and that's only for the smallest Mamba model.
So it's much cleaner with a custom operator.
Not sure about the name, though.
* ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation
This will help with performance on CPU if ggml_vec_mul_f32
and ggml_vec_add_f32 are ever optimized with SIMD.
* mamba : very basic quantization support
Mostly works, but there is currently no difference
between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same).
Most of the SSM-specific weights can be kept in f32 without affecting
the size that much, since they are relatively small.
(the linear projection weights are responsible for most of Mamba's size)
Too much quantization seems to make the state degrade quite fast, and
the model begins to output gibberish.
It seems to affect bigger models to a lesser extent than small models,
but I'm not sure by how much.
Experimentation will be needed to figure out which weights are more important
for the _M (and _L?) variants of k-quants for Mamba.
* convert : fix wrong name for layer norm weight of offical Mamba models
I was using Q-bert/Mamba-* models before, which have a slighlty different
naming scheme for the weights.
(they start with "model.layers" instead of "backbone.layers")
* mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator
This increases performance on CPU by around 30% for prompt processing,
and by around 20% for text generation.
However, it also makes the ggml_exp and ggml_soft_plus operators unused.
Whether or not they should be kept will be decided later.
* convert : for Mamba, also consider the "MambaLMHeadModel" arch name
It's the name of the class of the official implementation,
though they don't use it (yet) in the "architectures" field of config.json
* mamba : fix vocab size problems with official models
The perplexity was waaaay to high for models with a non-round vocab size.
Not sure why, but it needed to be fixed in the metadata.
Note that this breaks existing GGUF-converted Mamba models,
but **only if** the vocab size was not already rounded.
* ggml : remove ggml_exp and ggml_soft_plus
They did not exist anyway outside of this branch,
and since ggml_ssm_scan fused operations together, they are unused.
It's always possible to bring them back if needed.
* mamba : remove some useless comments
No code change.
* convert : fix flake8 linter errors
* mamba : apply suggestions from code review
* mamba : remove unecessary branch for row-wise ssm_state and C multiplication
It was previously done to avoid permuting when only one token is processed
at a time (like when generating text), but permuting is cheap,
and dynamically changing the compute graph is not future-proof.
* ggml : in ggml_ssm_scan, use more appropriate asserts
* ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32
* mamba : multiple sequences, but one at a time
This is a step towards making this Mamba implementation usable
with the server example (the way the system prompt is kept when clearing
the client slots will need to be changed before this can work, though).
The KV cache size for this kind of model is tied to the maximum number
of sequences kept at any single time.
For now, this number is obtained from n_parallel (plus one,
to have an extra sequence to dedicate to the system prompt),
but there might be a better way to do this which won't also
make the main example use 2 cells even if only 1 is really used.
(for this specific case, --parallel 0 helps)
Simultaneous sequence processing will probably require changes to
ggml_ssm_scan, and possibly a new operator for the conv step.
* mamba : support llama_kv_cache_seq_cp
This (mis)uses the logic around K shifts, because tokens in a state
can't be shifted anyway, and because inp_K_shift has the right shape and type.
Using ggml_get_rows is a nice way to do copies, but copy chains can't work.
Fortunately, copy chains don't really seem to be used in the examples.
Each KV cell is dedicated to the sequence ID corresponding to its own index.
* mamba : use a state mask
It's cleaner than the previous heuristic of
checking for the pos of the first token in the batch.
inp_KQ_mask could not be re-used for this, because it has the wrong shape
and because it seems more suited to the next step of
simultaneous sequence processing (helping with the problem of
remembering which token belongs to which sequence(s)/state(s)).
* llama : replace the usage of n_ctx with kv_self.size in many places
* mamba : use n_tokens directly instead of n_tok
* mamba : in comments, properly refer to KV cells instead of slots
* mamba : reduce memory usage of ggml_ssm_scan
From 290.37 MiB to 140.68 MiB of CPU compute buffer size
with Mamba 3B with a batch size of 512.
The result tensor of ggml_ssm_scan was previously a big part
of the CPU compute buffer size. To make it smaller,
it does not contain the intermediate ssm states anymore.
Both y and the last ssm state are combined in the result tensor,
because it seems only a single tensor can be returned by an operator
with the way the graph is built.
* mamba : simultaneous sequence processing
A batch can now contain tokens from multiple sequences.
This is necessary for at least the parallel example, the server example,
and the HellaSwag test in the perplexity example.
However, for this to be useful, uses of llama_kv_cache_seq_rm/cp
will need to be changed to work on whole sequences.
* ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba
This operator makes it possible to use and update the correct states
for each token of the batch in the same way as ggml_ssm_scan.
Other solutions which use existing operators would need loops which would
add too many nodes to the graph (at least the ones I thought of).
Using this operator further reduces the size of the CPU compute buffer
from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512.
And (at least on CPU), it's a bit faster than before.
Note that "ggml_ssm_conv" is probably not the most appropriate name,
and it could be changed if a better one is found.
* llama : add inp_s_seq as a new input tensor
The most convenient implementation to select the correct state (for Mamba)
for each token is to directly get the correct index from a tensor.
This is why inp_s_seq is storing int32_t and not floats.
The other, less convenient way to select the correct state would be
to have inp_KQ_mask contain 1.0f for each state used by a token
and 0.0f otherwise. This complicates quickly fetching the first used
state of a token, and is also less efficient because a whole row
of the mask would always need to be read for each token.
Using indexes makes it easy to stop searching when there are
no more sequences for a token, and the first sequence assigned
is always very quickly available (it's the first element of each row).
* mamba : support llama_kv_cache_seq_cp copy chains
* mamba : support shifting and dividing the kv cache pos
* mamba : make the server and parallel examples work with whole sequences
A seq_id is dedicated to the system prompt in both cases.
* llama : make llama_kv_cache_seq_rm return whether it succeeded or not
* mamba : dedicate an input tensor for state copy indices
This is cleaner and makes it easier to adapt when/if token positions
(and by extension, inp_K_shift) are no longer integers.
* mamba : adapt perplexity, batched, and batched-bench examples
* perplexity : limit the max number of sequences
This adapts to what the loaded model can provide.
* llama : add llama_n_max_seq to get the upper limit for seq_ids
Used by the perplexity example.
* batched : pass n_parallel to the model's context params
This should have been there already, but it wasn't.
* batched-bench : reserve sequences to support Mamba
* batched-bench : fix tokens being put in wrong sequences
Generation quality isn't what's measured in there anyway,
but at least using the correct sequences avoids using non-consecutive
token positions.
* mamba : stop abusing attention metadata
This breaks existing converted-to-GGUF Mamba models,
but will allow supporting mixed architectures like MambaFormer
without needing to break Mamba models.
This will also allow changing the size of Mamba's states
without having to reconvert models in the future.
(e.g. using something else than d_conv - 1 columns for the conv_states
will not require breaking existing converted Mamba models again)
* gguf-py : add new KV metadata key-value pairs for Mamba
* llama : add new metadata key-value pairs for Mamba
* llama : guard against divisions by zero when n_head is 0
* mamba : rename "unlimited" KV cache property to "recurrent"
* mamba : more correctly update the "used" field of the KV cache
* ggml : in ggml_ssm_scan, use a threshold for soft_plus
This is how the official Mamba implementation does it,
and it's also what torch.nn.Softplus does.
* convert : for Mamba, fallback to internal NeoX tokenizer
The resulting models are exactly the same
as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there.
* mamba : support state saving and restoring
* ggml : implicitly pass src tensors through dst for Mamba-related ops
* mamba : clarify some comments
* server : fix cache_tokens not getting correctly resized
Otherwise, when the "we have to evaluate at least 1 token" special case
was triggered, an extra token was kept in cache_tokens even if it was
removed from the KV cache.
For Mamba, this caused useless prompt reprocessing when the previous
request triggered the above case.
* convert-hf : support new metadata keys for Mamba
For the models available at
https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406
* mamba : rename metadata to be more similar to transformers library
This breaks existing converted-to-GGUF models,
but the metadata names are more "standard".
* mamba : support mamba-*-hf models
These models share their token_embd.weight with their output.weight
* mamba : add missing spaces
This is purely a formatting change.
* convert-hf : omit output.weight when identical with token_embd.weight
Only for Mamba for now, but it might be relevant for other models eventually.
Most Mamba models actually share these two tensors, albeit implicitly.
* readme : add Mamba to supported models, and add recent API changes
* mamba : move state_seq and state_mask views outside layer loop
A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 23:31:00 +01:00
llama_kv_cache_seq_rm ( ctx , slot . id + 1 , n_keep , n_keep + n_discard ) ;
llama_kv_cache_seq_add ( ctx , slot . id + 1 , n_keep + n_discard , system_tokens . size ( ) + slot . n_past , - n_discard ) ;
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
if ( slot . params . cache_prompt ) {
for ( size_t i = n_keep + n_discard ; i < slot . cache_tokens . size ( ) ; i + + ) {
slot . cache_tokens [ i - n_discard ] = slot . cache_tokens [ i ] ;
}
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
slot . cache_tokens . resize ( slot . cache_tokens . size ( ) - n_discard ) ;
}
2023-10-22 21:53:08 +02:00
2024-01-27 14:38:05 +01:00
slot . n_past - = n_discard ;
2023-10-22 21:53:08 +02:00
2024-01-27 14:38:05 +01:00
slot . truncated = true ;
}
2023-07-05 22:51:13 +02:00
}
2023-10-22 21:53:08 +02:00
}
2024-03-07 10:41:53 +01:00
// start populating the batch for this iteration
llama_batch_clear ( batch ) ;
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
// frist, add sampled tokens from any ongoing sequences
for ( auto & slot : slots ) {
if ( slot . state = = SLOT_STATE_IDLE ) {
2023-10-22 21:53:08 +02:00
continue ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
}
2023-10-22 21:53:08 +02:00
slot . i_batch = batch . n_tokens ;
2024-01-27 14:38:05 +01:00
const int32_t slot_npast = slot . n_past_se > 0 ? slot . n_past_se : slot . n_past ;
2023-10-22 21:53:08 +02:00
2024-01-30 19:17:30 +01:00
// TODO: we always have to take into account the "system_tokens"
// this is not great and needs to be improved somehow
llama : support Mamba Selective State Space Models (#5328)
* mamba : begin working on support for Mamba SSM
* mamba : begin figuring out how to (ab)use the kv cache for Mamba
* mamba : recurrent inference almost works, but incoherent
* mamba : recurrent inference WORKS!!!
* convert : optionally use d_conv and d_state from config.json for Mamba
* mamba : refactor recurrent conv, resulting in 20% perf increase
It's still slower than I'd like, but I did not really optimize `ggml_exp` yet.
I also refactored `ggml_exp` to work with tensors with more than 2 dimensions.
* ggml : parallelize ggml_exp
This results in 8% faster token generation for Mamba-130M.
* mamba : simplify the conv step with a self-overlapping view
Turns out the conv_state can be made smaller by one column.
Note that this breaks existing GGUFs of Mamba,
because the key_value_length field is tied to the conv_state size.
Convolution with a self-overlapping view is cool!
And it's much simpler than what I initially thought would be necessary
to make the convolution step work with more than 1 token at a time.
Next step is to make the SSM step work on batches of tokens too,
and thus I need to figure out a way to make a parallel selective scan
which will keep the ssm_state small and won't make it bigger
by a factor of (n_layer * batch_size).
* llama : fix Mamba KV self size wrongly displaying as f16 instead of f32
Relatedly, I also tried to see if other types than f32 worked for the states,
but they don't, because of the operators used.
It's probably better anyway to keep lots of precision there,
since the states are small anyway.
* mamba : fix self-overlapping view depth stride
* mamba : handle batches of more than 1 token
This means running Mamba no longer crashes when using the default settings!
And probably also slightly faster prompt processing.
Both batched and non-batched processing yield the same output.
Previously, the state was not cleared when starting a sequence.
Next step is to make the KV cache API work as expected for Mamba models.
* ggml: add ggml_ssm_scan to help with parallel selective scan
If the selective scan was implemented without a custom operator,
there would be waaay too many nodes in the graph. For example,
for Mamba-130M, with a batch size of 512 (the default),
a naive selective scan could add at least 24*512=12288 nodes,
which is more than LLAMA_MAX_NODES (8192),
and that's only for the smallest Mamba model.
So it's much cleaner with a custom operator.
Not sure about the name, though.
* ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation
This will help with performance on CPU if ggml_vec_mul_f32
and ggml_vec_add_f32 are ever optimized with SIMD.
* mamba : very basic quantization support
Mostly works, but there is currently no difference
between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same).
Most of the SSM-specific weights can be kept in f32 without affecting
the size that much, since they are relatively small.
(the linear projection weights are responsible for most of Mamba's size)
Too much quantization seems to make the state degrade quite fast, and
the model begins to output gibberish.
It seems to affect bigger models to a lesser extent than small models,
but I'm not sure by how much.
Experimentation will be needed to figure out which weights are more important
for the _M (and _L?) variants of k-quants for Mamba.
* convert : fix wrong name for layer norm weight of offical Mamba models
I was using Q-bert/Mamba-* models before, which have a slighlty different
naming scheme for the weights.
(they start with "model.layers" instead of "backbone.layers")
* mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator
This increases performance on CPU by around 30% for prompt processing,
and by around 20% for text generation.
However, it also makes the ggml_exp and ggml_soft_plus operators unused.
Whether or not they should be kept will be decided later.
* convert : for Mamba, also consider the "MambaLMHeadModel" arch name
It's the name of the class of the official implementation,
though they don't use it (yet) in the "architectures" field of config.json
* mamba : fix vocab size problems with official models
The perplexity was waaaay to high for models with a non-round vocab size.
Not sure why, but it needed to be fixed in the metadata.
Note that this breaks existing GGUF-converted Mamba models,
but **only if** the vocab size was not already rounded.
* ggml : remove ggml_exp and ggml_soft_plus
They did not exist anyway outside of this branch,
and since ggml_ssm_scan fused operations together, they are unused.
It's always possible to bring them back if needed.
* mamba : remove some useless comments
No code change.
* convert : fix flake8 linter errors
* mamba : apply suggestions from code review
* mamba : remove unecessary branch for row-wise ssm_state and C multiplication
It was previously done to avoid permuting when only one token is processed
at a time (like when generating text), but permuting is cheap,
and dynamically changing the compute graph is not future-proof.
* ggml : in ggml_ssm_scan, use more appropriate asserts
* ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32
* mamba : multiple sequences, but one at a time
This is a step towards making this Mamba implementation usable
with the server example (the way the system prompt is kept when clearing
the client slots will need to be changed before this can work, though).
The KV cache size for this kind of model is tied to the maximum number
of sequences kept at any single time.
For now, this number is obtained from n_parallel (plus one,
to have an extra sequence to dedicate to the system prompt),
but there might be a better way to do this which won't also
make the main example use 2 cells even if only 1 is really used.
(for this specific case, --parallel 0 helps)
Simultaneous sequence processing will probably require changes to
ggml_ssm_scan, and possibly a new operator for the conv step.
* mamba : support llama_kv_cache_seq_cp
This (mis)uses the logic around K shifts, because tokens in a state
can't be shifted anyway, and because inp_K_shift has the right shape and type.
Using ggml_get_rows is a nice way to do copies, but copy chains can't work.
Fortunately, copy chains don't really seem to be used in the examples.
Each KV cell is dedicated to the sequence ID corresponding to its own index.
* mamba : use a state mask
It's cleaner than the previous heuristic of
checking for the pos of the first token in the batch.
inp_KQ_mask could not be re-used for this, because it has the wrong shape
and because it seems more suited to the next step of
simultaneous sequence processing (helping with the problem of
remembering which token belongs to which sequence(s)/state(s)).
* llama : replace the usage of n_ctx with kv_self.size in many places
* mamba : use n_tokens directly instead of n_tok
* mamba : in comments, properly refer to KV cells instead of slots
* mamba : reduce memory usage of ggml_ssm_scan
From 290.37 MiB to 140.68 MiB of CPU compute buffer size
with Mamba 3B with a batch size of 512.
The result tensor of ggml_ssm_scan was previously a big part
of the CPU compute buffer size. To make it smaller,
it does not contain the intermediate ssm states anymore.
Both y and the last ssm state are combined in the result tensor,
because it seems only a single tensor can be returned by an operator
with the way the graph is built.
* mamba : simultaneous sequence processing
A batch can now contain tokens from multiple sequences.
This is necessary for at least the parallel example, the server example,
and the HellaSwag test in the perplexity example.
However, for this to be useful, uses of llama_kv_cache_seq_rm/cp
will need to be changed to work on whole sequences.
* ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba
This operator makes it possible to use and update the correct states
for each token of the batch in the same way as ggml_ssm_scan.
Other solutions which use existing operators would need loops which would
add too many nodes to the graph (at least the ones I thought of).
Using this operator further reduces the size of the CPU compute buffer
from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512.
And (at least on CPU), it's a bit faster than before.
Note that "ggml_ssm_conv" is probably not the most appropriate name,
and it could be changed if a better one is found.
* llama : add inp_s_seq as a new input tensor
The most convenient implementation to select the correct state (for Mamba)
for each token is to directly get the correct index from a tensor.
This is why inp_s_seq is storing int32_t and not floats.
The other, less convenient way to select the correct state would be
to have inp_KQ_mask contain 1.0f for each state used by a token
and 0.0f otherwise. This complicates quickly fetching the first used
state of a token, and is also less efficient because a whole row
of the mask would always need to be read for each token.
Using indexes makes it easy to stop searching when there are
no more sequences for a token, and the first sequence assigned
is always very quickly available (it's the first element of each row).
* mamba : support llama_kv_cache_seq_cp copy chains
* mamba : support shifting and dividing the kv cache pos
* mamba : make the server and parallel examples work with whole sequences
A seq_id is dedicated to the system prompt in both cases.
* llama : make llama_kv_cache_seq_rm return whether it succeeded or not
* mamba : dedicate an input tensor for state copy indices
This is cleaner and makes it easier to adapt when/if token positions
(and by extension, inp_K_shift) are no longer integers.
* mamba : adapt perplexity, batched, and batched-bench examples
* perplexity : limit the max number of sequences
This adapts to what the loaded model can provide.
* llama : add llama_n_max_seq to get the upper limit for seq_ids
Used by the perplexity example.
* batched : pass n_parallel to the model's context params
This should have been there already, but it wasn't.
* batched-bench : reserve sequences to support Mamba
* batched-bench : fix tokens being put in wrong sequences
Generation quality isn't what's measured in there anyway,
but at least using the correct sequences avoids using non-consecutive
token positions.
* mamba : stop abusing attention metadata
This breaks existing converted-to-GGUF Mamba models,
but will allow supporting mixed architectures like MambaFormer
without needing to break Mamba models.
This will also allow changing the size of Mamba's states
without having to reconvert models in the future.
(e.g. using something else than d_conv - 1 columns for the conv_states
will not require breaking existing converted Mamba models again)
* gguf-py : add new KV metadata key-value pairs for Mamba
* llama : add new metadata key-value pairs for Mamba
* llama : guard against divisions by zero when n_head is 0
* mamba : rename "unlimited" KV cache property to "recurrent"
* mamba : more correctly update the "used" field of the KV cache
* ggml : in ggml_ssm_scan, use a threshold for soft_plus
This is how the official Mamba implementation does it,
and it's also what torch.nn.Softplus does.
* convert : for Mamba, fallback to internal NeoX tokenizer
The resulting models are exactly the same
as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there.
* mamba : support state saving and restoring
* ggml : implicitly pass src tensors through dst for Mamba-related ops
* mamba : clarify some comments
* server : fix cache_tokens not getting correctly resized
Otherwise, when the "we have to evaluate at least 1 token" special case
was triggered, an extra token was kept in cache_tokens even if it was
removed from the KV cache.
For Mamba, this caused useless prompt reprocessing when the previous
request triggered the above case.
* convert-hf : support new metadata keys for Mamba
For the models available at
https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406
* mamba : rename metadata to be more similar to transformers library
This breaks existing converted-to-GGUF models,
but the metadata names are more "standard".
* mamba : support mamba-*-hf models
These models share their token_embd.weight with their output.weight
* mamba : add missing spaces
This is purely a formatting change.
* convert-hf : omit output.weight when identical with token_embd.weight
Only for Mamba for now, but it might be relevant for other models eventually.
Most Mamba models actually share these two tensors, albeit implicitly.
* readme : add Mamba to supported models, and add recent API changes
* mamba : move state_seq and state_mask views outside layer loop
A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 23:31:00 +01:00
llama_batch_add ( batch , slot . sampled , system_tokens . size ( ) + slot_npast , { slot . id + 1 } , true ) ;
2024-03-07 10:41:53 +01:00
2023-10-22 21:53:08 +02:00
slot . n_past + = 1 ;
2024-03-07 10:41:53 +01:00
if ( slot . params . cache_prompt ) {
slot . cache_tokens . push_back ( slot . sampled ) ;
}
LOG_VERBOSE ( " slot decode token " , {
{ " id_slot " , slot . id } ,
{ " id_task " , slot . id_task } ,
{ " n_ctx " , n_ctx } ,
{ " n_past " , slot . n_past } ,
{ " n_system_tokens " , system_tokens . size ( ) } ,
{ " n_cache_tokens " , slot . cache_tokens . size ( ) } ,
{ " truncated " , slot . truncated }
} ) ;
2023-05-21 19:51:18 +02:00
}
2023-10-22 21:53:08 +02:00
// process in chunks of params.n_batch
2024-03-22 12:08:28 +01:00
int32_t n_batch = llama_n_batch ( ctx ) ;
2024-03-13 18:54:21 +01:00
int32_t n_ubatch = llama_n_ubatch ( ctx ) ;
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
// next, batch any pending prompts without exceeding n_batch
if ( params . cont_batching | | batch . n_tokens = = 0 ) {
for ( auto & slot : slots ) {
// this slot still has a prompt to be processed
if ( slot . state = = SLOT_STATE_IDLE & & slot . command = = SLOT_COMMAND_LOAD_PROMPT ) {
auto & prompt_tokens = slot . prompt_tokens ;
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
// we haven't tokenized the prompt yet - do it now:
if ( prompt_tokens . empty ( ) ) {
LOG_VERBOSE ( " tokenizing prompt " , {
{ " id_slot " , slot . id } ,
{ " id_task " , slot . id_task }
} ) ;
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
slot . t_start_process_prompt = ggml_time_us ( ) ;
slot . t_start_generation = 0 ;
if ( slot . infill ) {
bool suff_rm_leading_spc = true ;
if ( params . input_suffix . find_first_of ( ' ' ) = = 0 & & params . input_suffix . size ( ) > 1 ) {
params . input_suffix . erase ( 0 , 1 ) ;
suff_rm_leading_spc = false ;
}
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
auto prefix_tokens = tokenize ( slot . params . input_prefix , false ) ;
auto suffix_tokens = tokenize ( slot . params . input_suffix , false ) ;
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
const int space_token = 29871 ; // TODO: this should not be hardcoded
if ( suff_rm_leading_spc & & ! suffix_tokens . empty ( ) & & suffix_tokens [ 0 ] = = space_token ) {
suffix_tokens . erase ( suffix_tokens . begin ( ) ) ;
}
2023-11-11 06:48:21 +01:00
2024-03-07 10:41:53 +01:00
prefix_tokens . insert ( prefix_tokens . begin ( ) , llama_token_prefix ( model ) ) ;
prefix_tokens . insert ( prefix_tokens . begin ( ) , llama_token_bos ( model ) ) ; // always add BOS
prefix_tokens . insert ( prefix_tokens . end ( ) , llama_token_suffix ( model ) ) ;
prefix_tokens . insert ( prefix_tokens . end ( ) , suffix_tokens . begin ( ) , suffix_tokens . end ( ) ) ;
prefix_tokens . push_back ( llama_token_middle ( model ) ) ;
prompt_tokens = prefix_tokens ;
} else {
2024-04-09 19:44:08 +02:00
prompt_tokens = tokenize ( slot . prompt , system_prompt . empty ( ) ) ; // add BOS if there isn't system prompt
2024-03-07 10:41:53 +01:00
}
slot . n_past = 0 ;
2024-02-29 21:42:11 +01:00
slot . n_prompt_tokens = prompt_tokens . size ( ) ;
2023-11-11 06:48:21 +01:00
2024-03-09 10:30:04 +01:00
LOG_VERBOSE ( " prompt tokenized " , {
{ " id_slot " , slot . id } ,
{ " id_task " , slot . id_task } ,
{ " n_ctx " , slot . n_ctx } ,
{ " n_keep " , slot . params . n_keep } ,
{ " n_prompt_tokens " , slot . n_prompt_tokens } ,
{ " prompt_tokens " , tokens_to_str ( ctx , prompt_tokens . cbegin ( ) , prompt_tokens . cend ( ) ) } ,
} ) ;
2024-03-09 11:34:18 +01:00
// empty prompt passed -> release the slot and send empty response
if ( prompt_tokens . empty ( ) ) {
LOG_INFO ( " empty prompt - releasing slot " , {
{ " id_slot " , slot . id } ,
{ " id_task " , slot . id_task }
} ) ;
slot . state = SLOT_STATE_PROCESSING ;
slot . command = SLOT_COMMAND_NONE ;
slot . release ( ) ;
slot . print_timings ( ) ;
send_final_response ( slot ) ;
continue ;
}
2024-03-07 10:41:53 +01:00
if ( slot . embedding ) {
// this prompt is too large to process - discard it
2024-03-13 18:54:21 +01:00
if ( slot . n_prompt_tokens > n_ubatch ) {
2024-03-07 10:41:53 +01:00
slot . state = SLOT_STATE_PROCESSING ;
slot . command = SLOT_COMMAND_NONE ;
slot . release ( ) ;
2024-05-20 07:56:05 +02:00
send_error ( slot , " input is too large to process. increase the physical batch size " , ERROR_TYPE_SERVER ) ;
2024-03-07 10:41:53 +01:00
continue ;
}
} else {
if ( slot . params . n_keep < 0 ) {
slot . params . n_keep = slot . n_prompt_tokens ;
}
slot . params . n_keep = std : : min ( slot . n_ctx - 4 , slot . params . n_keep ) ;
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
// if input prompt is too big, truncate it (if group attention self-extend is disabled)
if ( slot . ga_n = = 1 & & slot . n_prompt_tokens > = slot . n_ctx ) {
const int n_left = slot . n_ctx - slot . params . n_keep ;
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
const int n_block_size = n_left / 2 ;
const int erased_blocks = ( slot . n_prompt_tokens - slot . params . n_keep - n_block_size ) / n_block_size ;
2024-02-25 19:43:50 +01:00
2024-03-07 10:41:53 +01:00
std : : vector < llama_token > new_tokens (
prompt_tokens . begin ( ) ,
prompt_tokens . begin ( ) + slot . params . n_keep ) ;
2024-02-25 19:43:50 +01:00
2024-03-07 10:41:53 +01:00
new_tokens . insert (
new_tokens . end ( ) ,
prompt_tokens . begin ( ) + slot . params . n_keep + erased_blocks * n_block_size ,
prompt_tokens . end ( ) ) ;
prompt_tokens = std : : move ( new_tokens ) ;
slot . truncated = true ;
slot . n_prompt_tokens = prompt_tokens . size ( ) ;
LOG_VERBOSE ( " input truncated " , {
2024-03-09 10:30:04 +01:00
{ " id_slot " , slot . id } ,
{ " id_task " , slot . id_task } ,
{ " n_ctx " , slot . n_ctx } ,
{ " n_keep " , slot . params . n_keep } ,
{ " n_left " , n_left } ,
{ " n_prompt_tokens " , slot . n_prompt_tokens } ,
{ " prompt_tokens " , tokens_to_str ( ctx , prompt_tokens . cbegin ( ) , prompt_tokens . cend ( ) ) } ,
2024-03-07 10:41:53 +01:00
} ) ;
GGML_ASSERT ( slot . n_prompt_tokens < slot . n_ctx ) ;
}
llama_sampling_reset ( slot . ctx_sampling ) ;
if ( ! slot . params . cache_prompt ) {
slot . n_past_se = 0 ;
slot . ga_i = 0 ;
} else {
GGML_ASSERT ( slot . ga_n = = 1 ) ;
// reuse any previously computed tokens that are common with the new prompt
slot . n_past = common_part ( slot . cache_tokens , prompt_tokens ) ;
// push the prompt into the sampling context (do not apply grammar)
for ( int i = 0 ; i < slot . n_past ; + + i ) {
llama_sampling_accept ( slot . ctx_sampling , ctx , slot . cache_tokens [ i ] , false ) ;
2024-01-27 14:38:05 +01:00
}
}
}
2024-03-07 10:41:53 +01:00
if ( slot . n_past = = slot . n_prompt_tokens & & slot . n_past > 0 ) {
// we have to evaluate at least 1 token to generate logits.
LOG_INFO ( " we have to evaluate at least 1 token to generate logits " , {
{ " id_slot " , slot . id } ,
{ " id_task " , slot . id_task }
} ) ;
slot . n_past - - ;
if ( slot . ga_i > 0 ) {
slot . n_past_se - - ;
}
}
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
slot . n_prompt_tokens_processed = 0 ;
}
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
if ( slot . embedding ) {
// cannot fit the prompt in the current batch - will try next iter
if ( batch . n_tokens + slot . n_prompt_tokens > n_batch ) {
continue ;
2024-01-27 14:38:05 +01:00
}
2023-10-22 21:53:08 +02:00
}
llama : support Mamba Selective State Space Models (#5328)
* mamba : begin working on support for Mamba SSM
* mamba : begin figuring out how to (ab)use the kv cache for Mamba
* mamba : recurrent inference almost works, but incoherent
* mamba : recurrent inference WORKS!!!
* convert : optionally use d_conv and d_state from config.json for Mamba
* mamba : refactor recurrent conv, resulting in 20% perf increase
It's still slower than I'd like, but I did not really optimize `ggml_exp` yet.
I also refactored `ggml_exp` to work with tensors with more than 2 dimensions.
* ggml : parallelize ggml_exp
This results in 8% faster token generation for Mamba-130M.
* mamba : simplify the conv step with a self-overlapping view
Turns out the conv_state can be made smaller by one column.
Note that this breaks existing GGUFs of Mamba,
because the key_value_length field is tied to the conv_state size.
Convolution with a self-overlapping view is cool!
And it's much simpler than what I initially thought would be necessary
to make the convolution step work with more than 1 token at a time.
Next step is to make the SSM step work on batches of tokens too,
and thus I need to figure out a way to make a parallel selective scan
which will keep the ssm_state small and won't make it bigger
by a factor of (n_layer * batch_size).
* llama : fix Mamba KV self size wrongly displaying as f16 instead of f32
Relatedly, I also tried to see if other types than f32 worked for the states,
but they don't, because of the operators used.
It's probably better anyway to keep lots of precision there,
since the states are small anyway.
* mamba : fix self-overlapping view depth stride
* mamba : handle batches of more than 1 token
This means running Mamba no longer crashes when using the default settings!
And probably also slightly faster prompt processing.
Both batched and non-batched processing yield the same output.
Previously, the state was not cleared when starting a sequence.
Next step is to make the KV cache API work as expected for Mamba models.
* ggml: add ggml_ssm_scan to help with parallel selective scan
If the selective scan was implemented without a custom operator,
there would be waaay too many nodes in the graph. For example,
for Mamba-130M, with a batch size of 512 (the default),
a naive selective scan could add at least 24*512=12288 nodes,
which is more than LLAMA_MAX_NODES (8192),
and that's only for the smallest Mamba model.
So it's much cleaner with a custom operator.
Not sure about the name, though.
* ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation
This will help with performance on CPU if ggml_vec_mul_f32
and ggml_vec_add_f32 are ever optimized with SIMD.
* mamba : very basic quantization support
Mostly works, but there is currently no difference
between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same).
Most of the SSM-specific weights can be kept in f32 without affecting
the size that much, since they are relatively small.
(the linear projection weights are responsible for most of Mamba's size)
Too much quantization seems to make the state degrade quite fast, and
the model begins to output gibberish.
It seems to affect bigger models to a lesser extent than small models,
but I'm not sure by how much.
Experimentation will be needed to figure out which weights are more important
for the _M (and _L?) variants of k-quants for Mamba.
* convert : fix wrong name for layer norm weight of offical Mamba models
I was using Q-bert/Mamba-* models before, which have a slighlty different
naming scheme for the weights.
(they start with "model.layers" instead of "backbone.layers")
* mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator
This increases performance on CPU by around 30% for prompt processing,
and by around 20% for text generation.
However, it also makes the ggml_exp and ggml_soft_plus operators unused.
Whether or not they should be kept will be decided later.
* convert : for Mamba, also consider the "MambaLMHeadModel" arch name
It's the name of the class of the official implementation,
though they don't use it (yet) in the "architectures" field of config.json
* mamba : fix vocab size problems with official models
The perplexity was waaaay to high for models with a non-round vocab size.
Not sure why, but it needed to be fixed in the metadata.
Note that this breaks existing GGUF-converted Mamba models,
but **only if** the vocab size was not already rounded.
* ggml : remove ggml_exp and ggml_soft_plus
They did not exist anyway outside of this branch,
and since ggml_ssm_scan fused operations together, they are unused.
It's always possible to bring them back if needed.
* mamba : remove some useless comments
No code change.
* convert : fix flake8 linter errors
* mamba : apply suggestions from code review
* mamba : remove unecessary branch for row-wise ssm_state and C multiplication
It was previously done to avoid permuting when only one token is processed
at a time (like when generating text), but permuting is cheap,
and dynamically changing the compute graph is not future-proof.
* ggml : in ggml_ssm_scan, use more appropriate asserts
* ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32
* mamba : multiple sequences, but one at a time
This is a step towards making this Mamba implementation usable
with the server example (the way the system prompt is kept when clearing
the client slots will need to be changed before this can work, though).
The KV cache size for this kind of model is tied to the maximum number
of sequences kept at any single time.
For now, this number is obtained from n_parallel (plus one,
to have an extra sequence to dedicate to the system prompt),
but there might be a better way to do this which won't also
make the main example use 2 cells even if only 1 is really used.
(for this specific case, --parallel 0 helps)
Simultaneous sequence processing will probably require changes to
ggml_ssm_scan, and possibly a new operator for the conv step.
* mamba : support llama_kv_cache_seq_cp
This (mis)uses the logic around K shifts, because tokens in a state
can't be shifted anyway, and because inp_K_shift has the right shape and type.
Using ggml_get_rows is a nice way to do copies, but copy chains can't work.
Fortunately, copy chains don't really seem to be used in the examples.
Each KV cell is dedicated to the sequence ID corresponding to its own index.
* mamba : use a state mask
It's cleaner than the previous heuristic of
checking for the pos of the first token in the batch.
inp_KQ_mask could not be re-used for this, because it has the wrong shape
and because it seems more suited to the next step of
simultaneous sequence processing (helping with the problem of
remembering which token belongs to which sequence(s)/state(s)).
* llama : replace the usage of n_ctx with kv_self.size in many places
* mamba : use n_tokens directly instead of n_tok
* mamba : in comments, properly refer to KV cells instead of slots
* mamba : reduce memory usage of ggml_ssm_scan
From 290.37 MiB to 140.68 MiB of CPU compute buffer size
with Mamba 3B with a batch size of 512.
The result tensor of ggml_ssm_scan was previously a big part
of the CPU compute buffer size. To make it smaller,
it does not contain the intermediate ssm states anymore.
Both y and the last ssm state are combined in the result tensor,
because it seems only a single tensor can be returned by an operator
with the way the graph is built.
* mamba : simultaneous sequence processing
A batch can now contain tokens from multiple sequences.
This is necessary for at least the parallel example, the server example,
and the HellaSwag test in the perplexity example.
However, for this to be useful, uses of llama_kv_cache_seq_rm/cp
will need to be changed to work on whole sequences.
* ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba
This operator makes it possible to use and update the correct states
for each token of the batch in the same way as ggml_ssm_scan.
Other solutions which use existing operators would need loops which would
add too many nodes to the graph (at least the ones I thought of).
Using this operator further reduces the size of the CPU compute buffer
from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512.
And (at least on CPU), it's a bit faster than before.
Note that "ggml_ssm_conv" is probably not the most appropriate name,
and it could be changed if a better one is found.
* llama : add inp_s_seq as a new input tensor
The most convenient implementation to select the correct state (for Mamba)
for each token is to directly get the correct index from a tensor.
This is why inp_s_seq is storing int32_t and not floats.
The other, less convenient way to select the correct state would be
to have inp_KQ_mask contain 1.0f for each state used by a token
and 0.0f otherwise. This complicates quickly fetching the first used
state of a token, and is also less efficient because a whole row
of the mask would always need to be read for each token.
Using indexes makes it easy to stop searching when there are
no more sequences for a token, and the first sequence assigned
is always very quickly available (it's the first element of each row).
* mamba : support llama_kv_cache_seq_cp copy chains
* mamba : support shifting and dividing the kv cache pos
* mamba : make the server and parallel examples work with whole sequences
A seq_id is dedicated to the system prompt in both cases.
* llama : make llama_kv_cache_seq_rm return whether it succeeded or not
* mamba : dedicate an input tensor for state copy indices
This is cleaner and makes it easier to adapt when/if token positions
(and by extension, inp_K_shift) are no longer integers.
* mamba : adapt perplexity, batched, and batched-bench examples
* perplexity : limit the max number of sequences
This adapts to what the loaded model can provide.
* llama : add llama_n_max_seq to get the upper limit for seq_ids
Used by the perplexity example.
* batched : pass n_parallel to the model's context params
This should have been there already, but it wasn't.
* batched-bench : reserve sequences to support Mamba
* batched-bench : fix tokens being put in wrong sequences
Generation quality isn't what's measured in there anyway,
but at least using the correct sequences avoids using non-consecutive
token positions.
* mamba : stop abusing attention metadata
This breaks existing converted-to-GGUF Mamba models,
but will allow supporting mixed architectures like MambaFormer
without needing to break Mamba models.
This will also allow changing the size of Mamba's states
without having to reconvert models in the future.
(e.g. using something else than d_conv - 1 columns for the conv_states
will not require breaking existing converted Mamba models again)
* gguf-py : add new KV metadata key-value pairs for Mamba
* llama : add new metadata key-value pairs for Mamba
* llama : guard against divisions by zero when n_head is 0
* mamba : rename "unlimited" KV cache property to "recurrent"
* mamba : more correctly update the "used" field of the KV cache
* ggml : in ggml_ssm_scan, use a threshold for soft_plus
This is how the official Mamba implementation does it,
and it's also what torch.nn.Softplus does.
* convert : for Mamba, fallback to internal NeoX tokenizer
The resulting models are exactly the same
as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there.
* mamba : support state saving and restoring
* ggml : implicitly pass src tensors through dst for Mamba-related ops
* mamba : clarify some comments
* server : fix cache_tokens not getting correctly resized
Otherwise, when the "we have to evaluate at least 1 token" special case
was triggered, an extra token was kept in cache_tokens even if it was
removed from the KV cache.
For Mamba, this caused useless prompt reprocessing when the previous
request triggered the above case.
* convert-hf : support new metadata keys for Mamba
For the models available at
https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406
* mamba : rename metadata to be more similar to transformers library
This breaks existing converted-to-GGUF models,
but the metadata names are more "standard".
* mamba : support mamba-*-hf models
These models share their token_embd.weight with their output.weight
* mamba : add missing spaces
This is purely a formatting change.
* convert-hf : omit output.weight when identical with token_embd.weight
Only for Mamba for now, but it might be relevant for other models eventually.
Most Mamba models actually share these two tensors, albeit implicitly.
* readme : add Mamba to supported models, and add recent API changes
* mamba : move state_seq and state_mask views outside layer loop
A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 23:31:00 +01:00
// keep only the common part
int p0 = ( int ) system_tokens . size ( ) + slot . n_past ;
if ( ! llama_kv_cache_seq_rm ( ctx , slot . id + 1 , p0 , - 1 ) ) {
// could not partially delete (likely using a non-Transformer model)
llama_kv_cache_seq_rm ( ctx , slot . id + 1 , - 1 , - 1 ) ;
p0 = ( int ) system_tokens . size ( ) ;
if ( p0 ! = 0 ) {
// copy over the system prompt when there is one
llama_kv_cache_seq_cp ( ctx , 0 , slot . id + 1 , - 1 , - 1 ) ;
}
// there is no common part left (except for the system prompt)
slot . n_past = 0 ;
slot . n_past_se = 0 ;
slot . ga_i = 0 ;
// TODO: is the system prompt ever in the sampling context?
llama_sampling_reset ( slot . ctx_sampling ) ;
}
// remove the non-common part from the cache
slot . cache_tokens . resize ( slot . n_past ) ;
2024-03-07 10:41:53 +01:00
2024-02-25 13:50:32 +01:00
LOG_INFO ( " kv cache rm [p0, end) " , {
2024-03-07 10:41:53 +01:00
{ " id_slot " , slot . id } ,
{ " id_task " , slot . id_task } ,
2024-02-25 13:50:32 +01:00
{ " p0 " , p0 }
} ) ;
2024-01-30 19:17:30 +01:00
2024-01-27 14:38:05 +01:00
int32_t slot_npast = slot . n_past_se > 0 ? slot . n_past_se : slot . n_past ;
2024-01-30 19:17:30 +01:00
int32_t ga_i = slot . ga_i ;
2024-01-27 14:38:05 +01:00
int32_t ga_n = slot . ga_n ;
int32_t ga_w = slot . ga_w ;
2024-01-30 19:17:30 +01:00
2024-03-07 10:41:53 +01:00
// add prompt tokens for processing in the current batch
// TODO: the self-extend stuff here is a mess - simplify and/or abstract it somehow
for ( ; slot . n_past < slot . n_prompt_tokens & & batch . n_tokens < n_batch ; + + slot . n_past ) {
if ( slot . ga_n ! = 1 ) {
2024-01-27 14:38:05 +01:00
while ( slot_npast > = ga_i + ga_w ) {
const int bd = ( ga_w / ga_n ) * ( ga_n - 1 ) ;
slot_npast - = bd ;
ga_i + = ga_w / ga_n ;
}
}
2024-03-07 10:41:53 +01:00
llama : support Mamba Selective State Space Models (#5328)
* mamba : begin working on support for Mamba SSM
* mamba : begin figuring out how to (ab)use the kv cache for Mamba
* mamba : recurrent inference almost works, but incoherent
* mamba : recurrent inference WORKS!!!
* convert : optionally use d_conv and d_state from config.json for Mamba
* mamba : refactor recurrent conv, resulting in 20% perf increase
It's still slower than I'd like, but I did not really optimize `ggml_exp` yet.
I also refactored `ggml_exp` to work with tensors with more than 2 dimensions.
* ggml : parallelize ggml_exp
This results in 8% faster token generation for Mamba-130M.
* mamba : simplify the conv step with a self-overlapping view
Turns out the conv_state can be made smaller by one column.
Note that this breaks existing GGUFs of Mamba,
because the key_value_length field is tied to the conv_state size.
Convolution with a self-overlapping view is cool!
And it's much simpler than what I initially thought would be necessary
to make the convolution step work with more than 1 token at a time.
Next step is to make the SSM step work on batches of tokens too,
and thus I need to figure out a way to make a parallel selective scan
which will keep the ssm_state small and won't make it bigger
by a factor of (n_layer * batch_size).
* llama : fix Mamba KV self size wrongly displaying as f16 instead of f32
Relatedly, I also tried to see if other types than f32 worked for the states,
but they don't, because of the operators used.
It's probably better anyway to keep lots of precision there,
since the states are small anyway.
* mamba : fix self-overlapping view depth stride
* mamba : handle batches of more than 1 token
This means running Mamba no longer crashes when using the default settings!
And probably also slightly faster prompt processing.
Both batched and non-batched processing yield the same output.
Previously, the state was not cleared when starting a sequence.
Next step is to make the KV cache API work as expected for Mamba models.
* ggml: add ggml_ssm_scan to help with parallel selective scan
If the selective scan was implemented without a custom operator,
there would be waaay too many nodes in the graph. For example,
for Mamba-130M, with a batch size of 512 (the default),
a naive selective scan could add at least 24*512=12288 nodes,
which is more than LLAMA_MAX_NODES (8192),
and that's only for the smallest Mamba model.
So it's much cleaner with a custom operator.
Not sure about the name, though.
* ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation
This will help with performance on CPU if ggml_vec_mul_f32
and ggml_vec_add_f32 are ever optimized with SIMD.
* mamba : very basic quantization support
Mostly works, but there is currently no difference
between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same).
Most of the SSM-specific weights can be kept in f32 without affecting
the size that much, since they are relatively small.
(the linear projection weights are responsible for most of Mamba's size)
Too much quantization seems to make the state degrade quite fast, and
the model begins to output gibberish.
It seems to affect bigger models to a lesser extent than small models,
but I'm not sure by how much.
Experimentation will be needed to figure out which weights are more important
for the _M (and _L?) variants of k-quants for Mamba.
* convert : fix wrong name for layer norm weight of offical Mamba models
I was using Q-bert/Mamba-* models before, which have a slighlty different
naming scheme for the weights.
(they start with "model.layers" instead of "backbone.layers")
* mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator
This increases performance on CPU by around 30% for prompt processing,
and by around 20% for text generation.
However, it also makes the ggml_exp and ggml_soft_plus operators unused.
Whether or not they should be kept will be decided later.
* convert : for Mamba, also consider the "MambaLMHeadModel" arch name
It's the name of the class of the official implementation,
though they don't use it (yet) in the "architectures" field of config.json
* mamba : fix vocab size problems with official models
The perplexity was waaaay to high for models with a non-round vocab size.
Not sure why, but it needed to be fixed in the metadata.
Note that this breaks existing GGUF-converted Mamba models,
but **only if** the vocab size was not already rounded.
* ggml : remove ggml_exp and ggml_soft_plus
They did not exist anyway outside of this branch,
and since ggml_ssm_scan fused operations together, they are unused.
It's always possible to bring them back if needed.
* mamba : remove some useless comments
No code change.
* convert : fix flake8 linter errors
* mamba : apply suggestions from code review
* mamba : remove unecessary branch for row-wise ssm_state and C multiplication
It was previously done to avoid permuting when only one token is processed
at a time (like when generating text), but permuting is cheap,
and dynamically changing the compute graph is not future-proof.
* ggml : in ggml_ssm_scan, use more appropriate asserts
* ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32
* mamba : multiple sequences, but one at a time
This is a step towards making this Mamba implementation usable
with the server example (the way the system prompt is kept when clearing
the client slots will need to be changed before this can work, though).
The KV cache size for this kind of model is tied to the maximum number
of sequences kept at any single time.
For now, this number is obtained from n_parallel (plus one,
to have an extra sequence to dedicate to the system prompt),
but there might be a better way to do this which won't also
make the main example use 2 cells even if only 1 is really used.
(for this specific case, --parallel 0 helps)
Simultaneous sequence processing will probably require changes to
ggml_ssm_scan, and possibly a new operator for the conv step.
* mamba : support llama_kv_cache_seq_cp
This (mis)uses the logic around K shifts, because tokens in a state
can't be shifted anyway, and because inp_K_shift has the right shape and type.
Using ggml_get_rows is a nice way to do copies, but copy chains can't work.
Fortunately, copy chains don't really seem to be used in the examples.
Each KV cell is dedicated to the sequence ID corresponding to its own index.
* mamba : use a state mask
It's cleaner than the previous heuristic of
checking for the pos of the first token in the batch.
inp_KQ_mask could not be re-used for this, because it has the wrong shape
and because it seems more suited to the next step of
simultaneous sequence processing (helping with the problem of
remembering which token belongs to which sequence(s)/state(s)).
* llama : replace the usage of n_ctx with kv_self.size in many places
* mamba : use n_tokens directly instead of n_tok
* mamba : in comments, properly refer to KV cells instead of slots
* mamba : reduce memory usage of ggml_ssm_scan
From 290.37 MiB to 140.68 MiB of CPU compute buffer size
with Mamba 3B with a batch size of 512.
The result tensor of ggml_ssm_scan was previously a big part
of the CPU compute buffer size. To make it smaller,
it does not contain the intermediate ssm states anymore.
Both y and the last ssm state are combined in the result tensor,
because it seems only a single tensor can be returned by an operator
with the way the graph is built.
* mamba : simultaneous sequence processing
A batch can now contain tokens from multiple sequences.
This is necessary for at least the parallel example, the server example,
and the HellaSwag test in the perplexity example.
However, for this to be useful, uses of llama_kv_cache_seq_rm/cp
will need to be changed to work on whole sequences.
* ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba
This operator makes it possible to use and update the correct states
for each token of the batch in the same way as ggml_ssm_scan.
Other solutions which use existing operators would need loops which would
add too many nodes to the graph (at least the ones I thought of).
Using this operator further reduces the size of the CPU compute buffer
from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512.
And (at least on CPU), it's a bit faster than before.
Note that "ggml_ssm_conv" is probably not the most appropriate name,
and it could be changed if a better one is found.
* llama : add inp_s_seq as a new input tensor
The most convenient implementation to select the correct state (for Mamba)
for each token is to directly get the correct index from a tensor.
This is why inp_s_seq is storing int32_t and not floats.
The other, less convenient way to select the correct state would be
to have inp_KQ_mask contain 1.0f for each state used by a token
and 0.0f otherwise. This complicates quickly fetching the first used
state of a token, and is also less efficient because a whole row
of the mask would always need to be read for each token.
Using indexes makes it easy to stop searching when there are
no more sequences for a token, and the first sequence assigned
is always very quickly available (it's the first element of each row).
* mamba : support llama_kv_cache_seq_cp copy chains
* mamba : support shifting and dividing the kv cache pos
* mamba : make the server and parallel examples work with whole sequences
A seq_id is dedicated to the system prompt in both cases.
* llama : make llama_kv_cache_seq_rm return whether it succeeded or not
* mamba : dedicate an input tensor for state copy indices
This is cleaner and makes it easier to adapt when/if token positions
(and by extension, inp_K_shift) are no longer integers.
* mamba : adapt perplexity, batched, and batched-bench examples
* perplexity : limit the max number of sequences
This adapts to what the loaded model can provide.
* llama : add llama_n_max_seq to get the upper limit for seq_ids
Used by the perplexity example.
* batched : pass n_parallel to the model's context params
This should have been there already, but it wasn't.
* batched-bench : reserve sequences to support Mamba
* batched-bench : fix tokens being put in wrong sequences
Generation quality isn't what's measured in there anyway,
but at least using the correct sequences avoids using non-consecutive
token positions.
* mamba : stop abusing attention metadata
This breaks existing converted-to-GGUF Mamba models,
but will allow supporting mixed architectures like MambaFormer
without needing to break Mamba models.
This will also allow changing the size of Mamba's states
without having to reconvert models in the future.
(e.g. using something else than d_conv - 1 columns for the conv_states
will not require breaking existing converted Mamba models again)
* gguf-py : add new KV metadata key-value pairs for Mamba
* llama : add new metadata key-value pairs for Mamba
* llama : guard against divisions by zero when n_head is 0
* mamba : rename "unlimited" KV cache property to "recurrent"
* mamba : more correctly update the "used" field of the KV cache
* ggml : in ggml_ssm_scan, use a threshold for soft_plus
This is how the official Mamba implementation does it,
and it's also what torch.nn.Softplus does.
* convert : for Mamba, fallback to internal NeoX tokenizer
The resulting models are exactly the same
as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there.
* mamba : support state saving and restoring
* ggml : implicitly pass src tensors through dst for Mamba-related ops
* mamba : clarify some comments
* server : fix cache_tokens not getting correctly resized
Otherwise, when the "we have to evaluate at least 1 token" special case
was triggered, an extra token was kept in cache_tokens even if it was
removed from the KV cache.
For Mamba, this caused useless prompt reprocessing when the previous
request triggered the above case.
* convert-hf : support new metadata keys for Mamba
For the models available at
https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406
* mamba : rename metadata to be more similar to transformers library
This breaks existing converted-to-GGUF models,
but the metadata names are more "standard".
* mamba : support mamba-*-hf models
These models share their token_embd.weight with their output.weight
* mamba : add missing spaces
This is purely a formatting change.
* convert-hf : omit output.weight when identical with token_embd.weight
Only for Mamba for now, but it might be relevant for other models eventually.
Most Mamba models actually share these two tensors, albeit implicitly.
* readme : add Mamba to supported models, and add recent API changes
* mamba : move state_seq and state_mask views outside layer loop
A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 23:31:00 +01:00
llama_batch_add ( batch , prompt_tokens [ slot . n_past ] , system_tokens . size ( ) + slot_npast , { slot . id + 1 } , false ) ;
2024-03-07 10:41:53 +01:00
if ( slot . params . cache_prompt ) {
slot . cache_tokens . push_back ( prompt_tokens [ slot . n_past ] ) ;
}
slot . n_prompt_tokens_processed + + ;
2024-01-30 19:17:30 +01:00
slot_npast + + ;
2023-10-22 21:53:08 +02:00
}
2024-03-07 10:41:53 +01:00
LOG_VERBOSE ( " prompt processing progress " , {
{ " id_slot " , slot . id } ,
{ " n_past " , slot . n_past } ,
{ " n_ctx " , n_ctx } ,
{ " n_tokens " , batch . n_tokens } ,
{ " progress " , ( float ) slot . n_prompt_tokens_processed / slot . n_prompt_tokens } ,
} ) ;
// entire prompt has been processed - start decoding new tokens
if ( slot . n_past = = slot . n_prompt_tokens ) {
slot . state = SLOT_STATE_PROCESSING ;
slot . command = SLOT_COMMAND_NONE ;
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
GGML_ASSERT ( batch . n_tokens > 0 ) ;
// extract the logits only for the last token
2023-10-22 21:53:08 +02:00
batch . logits [ batch . n_tokens - 1 ] = true ;
2024-03-07 10:41:53 +01:00
slot . n_decoded = 0 ;
slot . i_batch = batch . n_tokens - 1 ;
LOG_VERBOSE ( " prompt done " , {
{ " id_slot " , slot . id } ,
{ " n_past " , slot . n_past } ,
{ " n_ctx " , n_ctx } ,
{ " n_tokens " , batch . n_tokens } ,
} ) ;
2023-10-22 21:53:08 +02:00
}
2024-03-07 10:41:53 +01:00
}
2023-10-22 21:53:08 +02:00
2024-03-07 10:41:53 +01:00
if ( batch . n_tokens > = n_batch ) {
break ;
2023-10-22 21:53:08 +02:00
}
}
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
}
2023-05-21 19:51:18 +02:00
2024-03-07 10:41:53 +01:00
if ( batch . n_tokens = = 0 ) {
LOG_VERBOSE ( " no tokens to decode " , { } ) ;
2024-03-11 10:56:41 +01:00
return ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
}
2023-05-21 19:51:18 +02:00
2024-03-07 10:41:53 +01:00
LOG_VERBOSE ( " decoding batch " , {
{ " n_tokens " , batch . n_tokens } ,
} ) ;
// process the created batch of tokens
2024-04-26 12:15:30 +02:00
for ( int32_t i = 0 ; i < batch . n_tokens ; i + = n_batch ) {
2024-03-04 21:31:20 +01:00
const int32_t n_tokens = std : : min ( n_batch , batch . n_tokens - i ) ;
2024-01-27 14:38:05 +01:00
2024-03-07 10:41:53 +01:00
for ( auto & slot : slots ) {
if ( slot . ga_n ! = 1 ) {
2024-01-27 14:38:05 +01:00
// context extension via Self-Extend
2024-03-07 10:41:53 +01:00
// TODO: simplify and/or abstract this
while ( slot . n_past_se > = slot . ga_i + slot . ga_w ) {
2024-01-27 14:38:05 +01:00
const int ib = ( slot . ga_n * slot . ga_i ) / slot . ga_w ;
const int bd = ( slot . ga_w / slot . ga_n ) * ( slot . ga_n - 1 ) ;
const int dd = ( slot . ga_w / slot . ga_n ) - ib * bd - slot . ga_w ;
LOG_TEE ( " \n " ) ;
LOG_TEE ( " shift: [%6d, %6d] + %6d -> [%6d, %6d] \n " , slot . ga_i , slot . n_past_se , ib * bd , slot . ga_i + ib * bd , slot . n_past_se + ib * bd ) ;
LOG_TEE ( " div: [%6d, %6d] / %6d -> [%6d, %6d] \n " , slot . ga_i + ib * bd , slot . ga_i + ib * bd + slot . ga_w , slot . ga_n , ( slot . ga_i + ib * bd ) / slot . ga_n , ( slot . ga_i + ib * bd + slot . ga_w ) / slot . ga_n ) ;
LOG_TEE ( " shift: [%6d, %6d] + %6d -> [%6d, %6d] \n " , slot . ga_i + ib * bd + slot . ga_w , slot . n_past_se + ib * bd , dd , slot . ga_i + ib * bd + slot . ga_w + dd , slot . n_past_se + ib * bd + dd ) ;
llama : support Mamba Selective State Space Models (#5328)
* mamba : begin working on support for Mamba SSM
* mamba : begin figuring out how to (ab)use the kv cache for Mamba
* mamba : recurrent inference almost works, but incoherent
* mamba : recurrent inference WORKS!!!
* convert : optionally use d_conv and d_state from config.json for Mamba
* mamba : refactor recurrent conv, resulting in 20% perf increase
It's still slower than I'd like, but I did not really optimize `ggml_exp` yet.
I also refactored `ggml_exp` to work with tensors with more than 2 dimensions.
* ggml : parallelize ggml_exp
This results in 8% faster token generation for Mamba-130M.
* mamba : simplify the conv step with a self-overlapping view
Turns out the conv_state can be made smaller by one column.
Note that this breaks existing GGUFs of Mamba,
because the key_value_length field is tied to the conv_state size.
Convolution with a self-overlapping view is cool!
And it's much simpler than what I initially thought would be necessary
to make the convolution step work with more than 1 token at a time.
Next step is to make the SSM step work on batches of tokens too,
and thus I need to figure out a way to make a parallel selective scan
which will keep the ssm_state small and won't make it bigger
by a factor of (n_layer * batch_size).
* llama : fix Mamba KV self size wrongly displaying as f16 instead of f32
Relatedly, I also tried to see if other types than f32 worked for the states,
but they don't, because of the operators used.
It's probably better anyway to keep lots of precision there,
since the states are small anyway.
* mamba : fix self-overlapping view depth stride
* mamba : handle batches of more than 1 token
This means running Mamba no longer crashes when using the default settings!
And probably also slightly faster prompt processing.
Both batched and non-batched processing yield the same output.
Previously, the state was not cleared when starting a sequence.
Next step is to make the KV cache API work as expected for Mamba models.
* ggml: add ggml_ssm_scan to help with parallel selective scan
If the selective scan was implemented without a custom operator,
there would be waaay too many nodes in the graph. For example,
for Mamba-130M, with a batch size of 512 (the default),
a naive selective scan could add at least 24*512=12288 nodes,
which is more than LLAMA_MAX_NODES (8192),
and that's only for the smallest Mamba model.
So it's much cleaner with a custom operator.
Not sure about the name, though.
* ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation
This will help with performance on CPU if ggml_vec_mul_f32
and ggml_vec_add_f32 are ever optimized with SIMD.
* mamba : very basic quantization support
Mostly works, but there is currently no difference
between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same).
Most of the SSM-specific weights can be kept in f32 without affecting
the size that much, since they are relatively small.
(the linear projection weights are responsible for most of Mamba's size)
Too much quantization seems to make the state degrade quite fast, and
the model begins to output gibberish.
It seems to affect bigger models to a lesser extent than small models,
but I'm not sure by how much.
Experimentation will be needed to figure out which weights are more important
for the _M (and _L?) variants of k-quants for Mamba.
* convert : fix wrong name for layer norm weight of offical Mamba models
I was using Q-bert/Mamba-* models before, which have a slighlty different
naming scheme for the weights.
(they start with "model.layers" instead of "backbone.layers")
* mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator
This increases performance on CPU by around 30% for prompt processing,
and by around 20% for text generation.
However, it also makes the ggml_exp and ggml_soft_plus operators unused.
Whether or not they should be kept will be decided later.
* convert : for Mamba, also consider the "MambaLMHeadModel" arch name
It's the name of the class of the official implementation,
though they don't use it (yet) in the "architectures" field of config.json
* mamba : fix vocab size problems with official models
The perplexity was waaaay to high for models with a non-round vocab size.
Not sure why, but it needed to be fixed in the metadata.
Note that this breaks existing GGUF-converted Mamba models,
but **only if** the vocab size was not already rounded.
* ggml : remove ggml_exp and ggml_soft_plus
They did not exist anyway outside of this branch,
and since ggml_ssm_scan fused operations together, they are unused.
It's always possible to bring them back if needed.
* mamba : remove some useless comments
No code change.
* convert : fix flake8 linter errors
* mamba : apply suggestions from code review
* mamba : remove unecessary branch for row-wise ssm_state and C multiplication
It was previously done to avoid permuting when only one token is processed
at a time (like when generating text), but permuting is cheap,
and dynamically changing the compute graph is not future-proof.
* ggml : in ggml_ssm_scan, use more appropriate asserts
* ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32
* mamba : multiple sequences, but one at a time
This is a step towards making this Mamba implementation usable
with the server example (the way the system prompt is kept when clearing
the client slots will need to be changed before this can work, though).
The KV cache size for this kind of model is tied to the maximum number
of sequences kept at any single time.
For now, this number is obtained from n_parallel (plus one,
to have an extra sequence to dedicate to the system prompt),
but there might be a better way to do this which won't also
make the main example use 2 cells even if only 1 is really used.
(for this specific case, --parallel 0 helps)
Simultaneous sequence processing will probably require changes to
ggml_ssm_scan, and possibly a new operator for the conv step.
* mamba : support llama_kv_cache_seq_cp
This (mis)uses the logic around K shifts, because tokens in a state
can't be shifted anyway, and because inp_K_shift has the right shape and type.
Using ggml_get_rows is a nice way to do copies, but copy chains can't work.
Fortunately, copy chains don't really seem to be used in the examples.
Each KV cell is dedicated to the sequence ID corresponding to its own index.
* mamba : use a state mask
It's cleaner than the previous heuristic of
checking for the pos of the first token in the batch.
inp_KQ_mask could not be re-used for this, because it has the wrong shape
and because it seems more suited to the next step of
simultaneous sequence processing (helping with the problem of
remembering which token belongs to which sequence(s)/state(s)).
* llama : replace the usage of n_ctx with kv_self.size in many places
* mamba : use n_tokens directly instead of n_tok
* mamba : in comments, properly refer to KV cells instead of slots
* mamba : reduce memory usage of ggml_ssm_scan
From 290.37 MiB to 140.68 MiB of CPU compute buffer size
with Mamba 3B with a batch size of 512.
The result tensor of ggml_ssm_scan was previously a big part
of the CPU compute buffer size. To make it smaller,
it does not contain the intermediate ssm states anymore.
Both y and the last ssm state are combined in the result tensor,
because it seems only a single tensor can be returned by an operator
with the way the graph is built.
* mamba : simultaneous sequence processing
A batch can now contain tokens from multiple sequences.
This is necessary for at least the parallel example, the server example,
and the HellaSwag test in the perplexity example.
However, for this to be useful, uses of llama_kv_cache_seq_rm/cp
will need to be changed to work on whole sequences.
* ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba
This operator makes it possible to use and update the correct states
for each token of the batch in the same way as ggml_ssm_scan.
Other solutions which use existing operators would need loops which would
add too many nodes to the graph (at least the ones I thought of).
Using this operator further reduces the size of the CPU compute buffer
from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512.
And (at least on CPU), it's a bit faster than before.
Note that "ggml_ssm_conv" is probably not the most appropriate name,
and it could be changed if a better one is found.
* llama : add inp_s_seq as a new input tensor
The most convenient implementation to select the correct state (for Mamba)
for each token is to directly get the correct index from a tensor.
This is why inp_s_seq is storing int32_t and not floats.
The other, less convenient way to select the correct state would be
to have inp_KQ_mask contain 1.0f for each state used by a token
and 0.0f otherwise. This complicates quickly fetching the first used
state of a token, and is also less efficient because a whole row
of the mask would always need to be read for each token.
Using indexes makes it easy to stop searching when there are
no more sequences for a token, and the first sequence assigned
is always very quickly available (it's the first element of each row).
* mamba : support llama_kv_cache_seq_cp copy chains
* mamba : support shifting and dividing the kv cache pos
* mamba : make the server and parallel examples work with whole sequences
A seq_id is dedicated to the system prompt in both cases.
* llama : make llama_kv_cache_seq_rm return whether it succeeded or not
* mamba : dedicate an input tensor for state copy indices
This is cleaner and makes it easier to adapt when/if token positions
(and by extension, inp_K_shift) are no longer integers.
* mamba : adapt perplexity, batched, and batched-bench examples
* perplexity : limit the max number of sequences
This adapts to what the loaded model can provide.
* llama : add llama_n_max_seq to get the upper limit for seq_ids
Used by the perplexity example.
* batched : pass n_parallel to the model's context params
This should have been there already, but it wasn't.
* batched-bench : reserve sequences to support Mamba
* batched-bench : fix tokens being put in wrong sequences
Generation quality isn't what's measured in there anyway,
but at least using the correct sequences avoids using non-consecutive
token positions.
* mamba : stop abusing attention metadata
This breaks existing converted-to-GGUF Mamba models,
but will allow supporting mixed architectures like MambaFormer
without needing to break Mamba models.
This will also allow changing the size of Mamba's states
without having to reconvert models in the future.
(e.g. using something else than d_conv - 1 columns for the conv_states
will not require breaking existing converted Mamba models again)
* gguf-py : add new KV metadata key-value pairs for Mamba
* llama : add new metadata key-value pairs for Mamba
* llama : guard against divisions by zero when n_head is 0
* mamba : rename "unlimited" KV cache property to "recurrent"
* mamba : more correctly update the "used" field of the KV cache
* ggml : in ggml_ssm_scan, use a threshold for soft_plus
This is how the official Mamba implementation does it,
and it's also what torch.nn.Softplus does.
* convert : for Mamba, fallback to internal NeoX tokenizer
The resulting models are exactly the same
as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there.
* mamba : support state saving and restoring
* ggml : implicitly pass src tensors through dst for Mamba-related ops
* mamba : clarify some comments
* server : fix cache_tokens not getting correctly resized
Otherwise, when the "we have to evaluate at least 1 token" special case
was triggered, an extra token was kept in cache_tokens even if it was
removed from the KV cache.
For Mamba, this caused useless prompt reprocessing when the previous
request triggered the above case.
* convert-hf : support new metadata keys for Mamba
For the models available at
https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406
* mamba : rename metadata to be more similar to transformers library
This breaks existing converted-to-GGUF models,
but the metadata names are more "standard".
* mamba : support mamba-*-hf models
These models share their token_embd.weight with their output.weight
* mamba : add missing spaces
This is purely a formatting change.
* convert-hf : omit output.weight when identical with token_embd.weight
Only for Mamba for now, but it might be relevant for other models eventually.
Most Mamba models actually share these two tensors, albeit implicitly.
* readme : add Mamba to supported models, and add recent API changes
* mamba : move state_seq and state_mask views outside layer loop
A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 23:31:00 +01:00
llama_kv_cache_seq_add ( ctx , slot . id + 1 , slot . ga_i , slot . n_past_se , ib * bd ) ;
llama_kv_cache_seq_div ( ctx , slot . id + 1 , slot . ga_i + ib * bd , slot . ga_i + ib * bd + slot . ga_w , slot . ga_n ) ;
llama_kv_cache_seq_add ( ctx , slot . id + 1 , slot . ga_i + ib * bd + slot . ga_w , slot . n_past_se + ib * bd , dd ) ;
2024-01-27 14:38:05 +01:00
slot . n_past_se - = bd ;
slot . ga_i + = slot . ga_w / slot . ga_n ;
LOG_TEE ( " \n n_past_old = %d, n_past = %d, ga_i = %d \n \n " , slot . n_past_se + bd , slot . n_past_se , slot . ga_i ) ;
}
2024-03-07 10:41:53 +01:00
2024-01-27 14:38:05 +01:00
slot . n_past_se + = n_tokens ;
}
}
2024-01-30 19:17:30 +01:00
2024-03-07 10:41:53 +01:00
llama_batch batch_view = {
2023-10-22 21:53:08 +02:00
n_tokens ,
batch . token + i ,
nullptr ,
batch . pos + i ,
batch . n_seq_id + i ,
batch . seq_id + i ,
batch . logits + i ,
0 , 0 , 0 , // unused
} ;
2023-05-21 19:51:18 +02:00
2023-10-22 21:53:08 +02:00
const int ret = llama_decode ( ctx , batch_view ) ;
2024-01-27 14:38:05 +01:00
2024-03-07 10:41:53 +01:00
if ( ret ! = 0 ) {
if ( n_batch = = 1 | | ret < 0 ) {
2023-10-22 21:53:08 +02:00
// if you get here, it means the KV cache is full - try increasing it via the context size
2024-04-12 13:49:21 +02:00
LOG_ERROR ( " failed to decode the batch: KV cache is full - try increasing it via the context size " , {
{ " i " , i } ,
{ " n_batch " , ret } ,
{ " ret " , ret } ,
} ) ;
2024-03-11 10:56:41 +01:00
for ( auto & slot : slots ) {
slot . state = SLOT_STATE_PROCESSING ;
slot . command = SLOT_COMMAND_NONE ;
slot . release ( ) ;
send_error ( slot , " Input prompt is too big compared to KV size. Please try increasing KV size. " ) ;
}
break ; // break loop of n_batch
2023-10-22 21:53:08 +02:00
}
2023-06-20 00:12:39 +02:00
2023-10-22 21:53:08 +02:00
// retry with half the batch size to try to find a free slot in the KV cache
n_batch / = 2 ;
i - = n_batch ;
2024-03-07 10:41:53 +01:00
2024-04-12 13:49:21 +02:00
LOG_WARNING ( " failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation " , {
{ " i " , i } ,
{ " n_batch " , n_batch } ,
{ " ret " , ret } ,
} ) ;
2024-03-11 10:56:41 +01:00
continue ; // continue loop of n_batch
2023-10-22 21:53:08 +02:00
}
2024-03-07 10:41:53 +01:00
for ( auto & slot : slots ) {
if ( slot . state ! = SLOT_STATE_PROCESSING | | slot . i_batch < ( int ) i | | slot . i_batch > = ( int ) ( i + n_tokens ) ) {
2024-03-11 10:56:41 +01:00
continue ; // continue loop of slots
2023-10-22 21:53:08 +02:00
}
// prompt evaluated for embedding
2024-03-07 10:41:53 +01:00
if ( slot . embedding ) {
2024-03-04 21:31:20 +01:00
send_embedding ( slot , batch_view ) ;
2023-10-22 21:53:08 +02:00
slot . release ( ) ;
slot . i_batch = - 1 ;
2024-03-11 10:56:41 +01:00
continue ; // continue loop of slots
2023-10-22 21:53:08 +02:00
}
completion_token_output result ;
const llama_token id = llama_sampling_sample ( slot . ctx_sampling , ctx , NULL , slot . i_batch - i ) ;
llama_sampling_accept ( slot . ctx_sampling , ctx , id , true ) ;
2024-01-07 07:45:26 +01:00
slot . n_decoded + = 1 ;
2024-03-07 10:41:53 +01:00
if ( slot . n_decoded = = 1 ) {
slot . t_start_generation = ggml_time_us ( ) ;
slot . t_prompt_processing = ( slot . t_start_generation - slot . t_start_process_prompt ) / 1e3 ;
2024-02-25 13:49:43 +01:00
metrics . on_prompt_eval ( slot ) ;
2023-10-22 21:53:08 +02:00
}
llama_token_data_array cur_p = { slot . ctx_sampling - > cur . data ( ) , slot . ctx_sampling - > cur . size ( ) , false } ;
result . tok = id ;
2024-05-07 23:07:58 +02:00
const size_t n_probs = std : : min ( cur_p . size , ( size_t ) slot . sparams . n_probs ) ;
if ( n_probs > 0 ) {
2024-05-11 10:11:28 +02:00
const size_t n_valid = slot . ctx_sampling - > n_valid ;
2023-10-22 21:53:08 +02:00
2024-05-07 23:07:58 +02:00
// Make sure at least n_probs top tokens are at the front of the vector:
2024-05-11 10:11:28 +02:00
if ( slot . sparams . temp = = 0.0f & & n_probs > n_valid ) {
2024-05-07 23:07:58 +02:00
llama_sample_top_k ( ctx , & cur_p , n_probs , 0 ) ;
}
if ( slot . sparams . temp = = 0.0f ) {
// With greedy sampling the probabilities have possibly not been calculated.
for ( size_t i = 0 ; i < n_probs ; + + i ) {
result . probs . push_back ( {
cur_p . data [ i ] . id ,
i = = 0 ? 1.0f : 0.0f
} ) ;
}
} else {
for ( size_t i = 0 ; i < n_probs ; + + i ) {
result . probs . push_back ( {
cur_p . data [ i ] . id ,
2024-05-11 10:11:28 +02:00
i > = n_valid ? 0.0f : cur_p . data [ i ] . p // Tokens filtered out due to e.g. top_k have 0 probability.
2024-05-07 23:07:58 +02:00
} ) ;
}
}
2023-10-22 21:53:08 +02:00
}
2024-03-07 10:41:53 +01:00
if ( ! process_token ( result , slot ) ) {
2023-10-22 21:53:08 +02:00
slot . release ( ) ;
slot . print_timings ( ) ;
2023-10-24 22:08:20 +02:00
send_final_response ( slot ) ;
2024-02-25 13:49:43 +01:00
metrics . on_prediction ( slot ) ;
2023-10-22 21:53:08 +02:00
}
slot . i_batch = - 1 ;
}
2023-06-20 00:12:39 +02:00
}
2024-02-25 13:50:32 +01:00
2024-03-11 10:56:41 +01:00
LOG_VERBOSE ( " run slots completed " , { } ) ;
2023-06-20 00:12:39 +02:00
}
2024-03-02 22:00:14 +01:00
2024-03-07 10:41:53 +01:00
json model_meta ( ) const {
return json {
{ " vocab_type " , llama_vocab_type ( model ) } ,
{ " n_vocab " , llama_n_vocab ( model ) } ,
{ " n_ctx_train " , llama_n_ctx_train ( model ) } ,
{ " n_embd " , llama_n_embd ( model ) } ,
{ " n_params " , llama_model_n_params ( model ) } ,
{ " size " , llama_model_size ( model ) } ,
2024-03-02 22:00:14 +01:00
} ;
}
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
} ;
2024-03-07 10:41:53 +01:00
static void log_server_request ( const httplib : : Request & req , const httplib : : Response & res ) {
2024-02-25 13:50:32 +01:00
// skip GH copilot requests when using default port
2024-03-07 10:41:53 +01:00
if ( req . path = = " /v1/health " | | req . path = = " /v1/completions " ) {
2024-02-25 13:50:32 +01:00
return ;
}
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
LOG_INFO ( " request " , {
2024-02-25 13:50:32 +01:00
{ " remote_addr " , req . remote_addr } ,
{ " remote_port " , req . remote_port } ,
{ " status " , res . status } ,
{ " method " , req . method } ,
{ " path " , req . path } ,
{ " params " , req . params } ,
} ) ;
2023-07-04 16:05:27 +02:00
LOG_VERBOSE ( " request " , {
2024-02-25 13:50:32 +01:00
{ " request " , req . body } ,
{ " response " , res . body } ,
} ) ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
}
2023-05-21 19:51:18 +02:00
2024-02-18 17:23:16 +01:00
std : : function < void ( int ) > shutdown_handler ;
2024-02-28 09:55:37 +01:00
std : : atomic_flag is_terminating = ATOMIC_FLAG_INIT ;
2024-03-07 10:41:53 +01:00
2024-02-28 09:55:37 +01:00
inline void signal_handler ( int signal ) {
if ( is_terminating . test_and_set ( ) ) {
// in case it hangs, we can force terminate the server by hitting Ctrl+C twice
// this is for better developer experience, we can remove when the server is stable enough
fprintf ( stderr , " Received second interrupt, terminating immediately. \n " ) ;
exit ( 1 ) ;
}
2024-03-07 10:41:53 +01:00
2024-02-28 09:55:37 +01:00
shutdown_handler ( signal ) ;
}
2024-02-18 17:23:16 +01:00
2024-03-07 10:41:53 +01:00
int main ( int argc , char * * argv ) {
2023-12-17 16:02:16 +01:00
# if SERVER_VERBOSE != 1
log_disable ( ) ;
# endif
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
// own arguments required by this example
2024-06-04 20:23:39 +02:00
gpt_params params ;
if ( ! gpt_params_parse ( argc , argv , params ) ) {
gpt_params_print_usage ( argc , argv , params ) ;
return 1 ;
}
// TODO: not great to use extern vars
server_log_json = params . log_json ;
2024-06-06 15:30:58 +02:00
server_verbose = params . verbosity > 0 ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
// struct that contains llama context and inference
2024-03-07 10:41:53 +01:00
server_context ctx_server ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-06-04 20:23:39 +02:00
if ( ! params . system_prompt . empty ( ) ) {
ctx_server . system_prompt_set ( params . system_prompt ) ;
2024-03-07 10:41:53 +01:00
}
if ( params . model_alias = = " unknown " ) {
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
params . model_alias = params . model ;
}
2024-02-16 10:31:07 +01:00
llama_backend_init ( ) ;
llama_numa_init ( params . numa ) ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-03-07 10:41:53 +01:00
LOG_INFO ( " build info " , {
{ " build " , LLAMA_BUILD_NUMBER } ,
{ " commit " , LLAMA_COMMIT }
} ) ;
2023-10-22 21:53:08 +02:00
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
LOG_INFO ( " system info " , {
2024-03-07 10:41:53 +01:00
{ " n_threads " , params . n_threads } ,
{ " n_threads_batch " , params . n_threads_batch } ,
{ " total_threads " , std : : thread : : hardware_concurrency ( ) } ,
{ " system_info " , llama_print_system_info ( ) } ,
} ) ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-03-09 10:57:09 +01:00
std : : unique_ptr < httplib : : Server > svr ;
# ifdef CPPHTTPLIB_OPENSSL_SUPPORT
2024-06-04 20:23:39 +02:00
if ( params . ssl_file_key ! = " " & & params . ssl_file_cert ! = " " ) {
LOG_INFO ( " Running with SSL " , { { " key " , params . ssl_file_key } , { " cert " , params . ssl_file_cert } } ) ;
2024-03-09 10:57:09 +01:00
svr . reset (
2024-06-04 20:23:39 +02:00
new httplib : : SSLServer ( params . ssl_file_cert . c_str ( ) , params . ssl_file_key . c_str ( ) )
2024-03-09 10:57:09 +01:00
) ;
} else {
LOG_INFO ( " Running without SSL " , { } ) ;
svr . reset ( new httplib : : Server ( ) ) ;
}
# else
svr . reset ( new httplib : : Server ( ) ) ;
# endif
2024-01-10 20:56:05 +01:00
2024-01-11 08:10:34 +01:00
std : : atomic < server_state > state { SERVER_STATE_LOADING_MODEL } ;
2024-01-10 20:56:05 +01:00
2024-03-09 10:57:09 +01:00
svr - > set_default_headers ( { { " Server " , " llama.cpp " } } ) ;
2024-01-11 19:02:48 +01:00
// CORS preflight
2024-03-09 10:57:09 +01:00
svr - > Options ( R " (.*) " , [ ] ( const httplib : : Request & req , httplib : : Response & res ) {
2024-03-07 10:41:53 +01:00
res . set_header ( " Access-Control-Allow-Origin " , req . get_header_value ( " Origin " ) ) ;
2024-01-11 19:02:48 +01:00
res . set_header ( " Access-Control-Allow-Credentials " , " true " ) ;
2024-03-07 10:41:53 +01:00
res . set_header ( " Access-Control-Allow-Methods " , " POST " ) ;
res . set_header ( " Access-Control-Allow-Headers " , " * " ) ;
2024-03-13 11:39:11 +01:00
return res . set_content ( " " , " application/json; charset=utf-8 " ) ;
2024-01-11 19:02:48 +01:00
} ) ;
2024-01-10 20:56:05 +01:00
2024-03-09 10:57:09 +01:00
svr - > set_logger ( log_server_request ) ;
2024-01-10 20:56:05 +01:00
2024-03-11 10:56:41 +01:00
auto res_error = [ ] ( httplib : : Response & res , json error_data ) {
json final_response { { " error " , error_data } } ;
res . set_content ( final_response . dump ( ) , " application/json; charset=utf-8 " ) ;
res . status = json_value ( error_data , " code " , 500 ) ;
} ;
2024-01-10 20:56:05 +01:00
2024-03-11 10:56:41 +01:00
svr - > set_exception_handler ( [ & res_error ] ( const httplib : : Request & , httplib : : Response & res , std : : exception_ptr ep ) {
std : : string message ;
2024-03-07 10:41:53 +01:00
try {
std : : rethrow_exception ( std : : move ( ep ) ) ;
2024-03-11 10:56:41 +01:00
} catch ( std : : exception & e ) {
message = e . what ( ) ;
2024-03-07 10:41:53 +01:00
} catch ( . . . ) {
2024-03-11 10:56:41 +01:00
message = " Unknown Exception " ;
2024-03-07 10:41:53 +01:00
}
2024-03-11 10:56:41 +01:00
json formatted_error = format_error_response ( message , ERROR_TYPE_SERVER ) ;
LOG_VERBOSE ( " Got exception " , formatted_error ) ;
res_error ( res , formatted_error ) ;
2024-03-07 10:41:53 +01:00
} ) ;
2024-03-11 10:56:41 +01:00
svr - > set_error_handler ( [ & res_error ] ( const httplib : : Request & , httplib : : Response & res ) {
2024-03-07 10:41:53 +01:00
if ( res . status = = 404 ) {
2024-03-11 10:56:41 +01:00
res_error ( res , format_error_response ( " File Not Found " , ERROR_TYPE_NOT_FOUND ) ) ;
2024-03-07 10:41:53 +01:00
}
2024-03-11 10:56:41 +01:00
// for other error codes, we skip processing here because it's already done by res_error()
2024-03-07 10:41:53 +01:00
} ) ;
2024-01-10 20:56:05 +01:00
// set timeouts and change hostname and port
2024-06-04 20:23:39 +02:00
svr - > set_read_timeout ( params . timeout_read ) ;
svr - > set_write_timeout ( params . timeout_write ) ;
2024-01-10 20:56:05 +01:00
2024-06-04 20:23:39 +02:00
if ( ! svr - > bind_to_port ( params . hostname , params . port ) ) {
fprintf ( stderr , " \n couldn't bind to server socket: hostname=%s port=%d \n \n " , params . hostname . c_str ( ) , params . port ) ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
return 1 ;
}
2024-01-10 20:56:05 +01:00
std : : unordered_map < std : : string , std : : string > log_data ;
2024-03-07 10:41:53 +01:00
2024-06-04 20:23:39 +02:00
log_data [ " hostname " ] = params . hostname ;
log_data [ " port " ] = std : : to_string ( params . port ) ;
2024-01-10 20:56:05 +01:00
2024-06-04 20:23:39 +02:00
if ( params . api_keys . size ( ) = = 1 ) {
auto key = params . api_keys [ 0 ] ;
2024-03-09 11:27:53 +01:00
log_data [ " api_key " ] = " api_key: **** " + key . substr ( std : : max ( ( int ) ( key . length ( ) - 4 ) , 0 ) ) ;
2024-06-04 20:23:39 +02:00
} else if ( params . api_keys . size ( ) > 1 ) {
log_data [ " api_key " ] = " api_key: " + std : : to_string ( params . api_keys . size ( ) ) + " keys loaded " ;
2024-01-10 20:56:05 +01:00
}
// load the model
2024-03-07 10:41:53 +01:00
if ( ! ctx_server . load_model ( params ) ) {
2024-01-11 08:10:34 +01:00
state . store ( SERVER_STATE_ERROR ) ;
2024-01-10 20:56:05 +01:00
return 1 ;
} else {
2024-03-09 16:34:15 +01:00
ctx_server . init ( ) ;
2024-01-11 08:10:34 +01:00
state . store ( SERVER_STATE_READY ) ;
2024-01-10 20:56:05 +01:00
}
2024-03-07 10:41:53 +01:00
LOG_INFO ( " model loaded " , { } ) ;
const auto model_meta = ctx_server . model_meta ( ) ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-03-09 21:04:00 +01:00
// if a custom chat template is not supplied, we will use the one that comes with the model (if any)
2024-06-04 20:23:39 +02:00
if ( params . chat_template . empty ( ) ) {
2024-03-07 10:41:53 +01:00
if ( ! ctx_server . validate_model_chat_template ( ) ) {
LOG_ERROR ( " The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses " , { } ) ;
2024-06-04 20:23:39 +02:00
params . chat_template = " chatml " ;
2024-03-07 10:41:53 +01:00
}
2024-02-22 09:33:24 +01:00
}
2024-03-09 21:04:00 +01:00
// print sample chat example to make it clear which template is used
{
json chat ;
chat . push_back ( { { " role " , " system " } , { " content " , " You are a helpful assistant " } } ) ;
chat . push_back ( { { " role " , " user " } , { " content " , " Hello " } } ) ;
chat . push_back ( { { " role " , " assistant " } , { " content " , " Hi there " } } ) ;
chat . push_back ( { { " role " , " user " } , { " content " , " How are you? " } } ) ;
2024-06-04 20:23:39 +02:00
const std : : string chat_example = format_chat ( ctx_server . model , params . chat_template , chat ) ;
2024-03-09 21:04:00 +01:00
LOG_INFO ( " chat template " , {
{ " chat_example " , chat_example } ,
2024-06-04 20:23:39 +02:00
{ " built_in " , params . chat_template . empty ( ) } ,
2024-03-09 21:04:00 +01:00
} ) ;
}
2024-03-09 11:27:53 +01:00
//
// Middlewares
//
2024-06-04 20:23:39 +02:00
auto middleware_validate_api_key = [ & params , & res_error ] ( const httplib : : Request & req , httplib : : Response & res ) {
2024-03-09 11:27:53 +01:00
// TODO: should we apply API key to all endpoints, including "/health" and "/models"?
static const std : : set < std : : string > protected_endpoints = {
" /props " ,
" /completion " ,
" /completions " ,
" /v1/completions " ,
" /chat/completions " ,
" /v1/chat/completions " ,
" /infill " ,
" /tokenize " ,
" /detokenize " ,
" /embedding " ,
" /embeddings " ,
" /v1/embeddings " ,
} ;
2023-12-15 12:49:01 +01:00
// If API key is not set, skip validation
2024-06-04 20:23:39 +02:00
if ( params . api_keys . empty ( ) ) {
2023-12-15 12:49:01 +01:00
return true ;
}
2024-03-09 11:27:53 +01:00
// If path is not in protected_endpoints list, skip validation
if ( protected_endpoints . find ( req . path ) = = protected_endpoints . end ( ) ) {
return true ;
}
2023-12-15 12:49:01 +01:00
// Check for API key in the header
auto auth_header = req . get_header_value ( " Authorization " ) ;
2024-03-07 10:41:53 +01:00
2023-12-15 12:49:01 +01:00
std : : string prefix = " Bearer " ;
if ( auth_header . substr ( 0 , prefix . size ( ) ) = = prefix ) {
std : : string received_api_key = auth_header . substr ( prefix . size ( ) ) ;
2024-06-04 20:23:39 +02:00
if ( std : : find ( params . api_keys . begin ( ) , params . api_keys . end ( ) , received_api_key ) ! = params . api_keys . end ( ) ) {
2023-12-15 12:49:01 +01:00
return true ; // API key is valid
}
}
// API key is invalid or not provided
2024-03-09 11:27:53 +01:00
// TODO: make another middleware for CORS related logic
res . set_header ( " Access-Control-Allow-Origin " , req . get_header_value ( " Origin " ) ) ;
2024-03-11 10:56:41 +01:00
res_error ( res , format_error_response ( " Invalid API Key " , ERROR_TYPE_AUTHENTICATION ) ) ;
2023-12-15 12:49:01 +01:00
LOG_WARNING ( " Unauthorized: Invalid API Key " , { } ) ;
return false ;
} ;
2024-03-09 11:27:53 +01:00
// register server middlewares
svr - > set_pre_routing_handler ( [ & middleware_validate_api_key ] ( const httplib : : Request & req , httplib : : Response & res ) {
if ( ! middleware_validate_api_key ( req , res ) ) {
return httplib : : Server : : HandlerResponse : : Handled ;
}
return httplib : : Server : : HandlerResponse : : Unhandled ;
2024-03-07 10:41:53 +01:00
} ) ;
2023-07-05 22:51:13 +02:00
2024-03-09 11:27:53 +01:00
//
// Route handlers (or controllers)
//
2023-07-04 16:05:27 +02:00
2024-03-09 11:27:53 +01:00
const auto handle_health = [ & ] ( const httplib : : Request & req , httplib : : Response & res ) {
server_state current_state = state . load ( ) ;
switch ( current_state ) {
case SERVER_STATE_READY :
{
// request slots data using task queue
server_task task ;
task . id = ctx_server . queue_tasks . get_new_id ( ) ;
task . type = SERVER_TASK_TYPE_METRICS ;
task . id_target = - 1 ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-03-09 11:27:53 +01:00
ctx_server . queue_results . add_waiting_task_id ( task . id ) ;
ctx_server . queue_tasks . post ( task ) ;
// get the result
server_task_result result = ctx_server . queue_results . recv ( task . id ) ;
ctx_server . queue_results . remove_waiting_task_id ( task . id ) ;
2024-05-08 21:53:08 +02:00
const int n_idle_slots = result . data . at ( " idle " ) ;
const int n_processing_slots = result . data . at ( " processing " ) ;
2024-03-09 11:27:53 +01:00
json health = {
{ " status " , " ok " } ,
{ " slots_idle " , n_idle_slots } ,
{ " slots_processing " , n_processing_slots }
} ;
res . status = 200 ; // HTTP OK
2024-06-04 20:23:39 +02:00
if ( params . endpoint_slots & & req . has_param ( " include_slots " ) ) {
2024-05-08 21:53:08 +02:00
health [ " slots " ] = result . data . at ( " slots " ) ;
2024-03-09 11:27:53 +01:00
}
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-03-09 11:27:53 +01:00
if ( n_idle_slots = = 0 ) {
health [ " status " ] = " no slot available " ;
if ( req . has_param ( " fail_on_no_slot " ) ) {
res . status = 503 ; // HTTP Service Unavailable
}
}
res . set_content ( health . dump ( ) , " application/json " ) ;
break ;
}
case SERVER_STATE_LOADING_MODEL :
{
2024-03-11 10:56:41 +01:00
res_error ( res , format_error_response ( " Loading model " , ERROR_TYPE_UNAVAILABLE ) ) ;
2024-03-09 11:27:53 +01:00
} break ;
case SERVER_STATE_ERROR :
{
2024-03-11 10:56:41 +01:00
res_error ( res , format_error_response ( " Model failed to load " , ERROR_TYPE_SERVER ) ) ;
2024-03-09 11:27:53 +01:00
} break ;
}
} ;
const auto handle_slots = [ & ] ( const httplib : : Request & , httplib : : Response & res ) {
2024-06-04 20:23:39 +02:00
if ( ! params . endpoint_slots ) {
2024-03-11 10:56:41 +01:00
res_error ( res , format_error_response ( " This server does not support slots endpoint. " , ERROR_TYPE_NOT_SUPPORTED ) ) ;
2024-03-09 11:27:53 +01:00
return ;
}
// request slots data using task queue
server_task task ;
task . id = ctx_server . queue_tasks . get_new_id ( ) ;
task . id_multi = - 1 ;
task . id_target = - 1 ;
task . type = SERVER_TASK_TYPE_METRICS ;
ctx_server . queue_results . add_waiting_task_id ( task . id ) ;
ctx_server . queue_tasks . post ( task ) ;
// get the result
server_task_result result = ctx_server . queue_results . recv ( task . id ) ;
ctx_server . queue_results . remove_waiting_task_id ( task . id ) ;
2024-05-08 21:53:08 +02:00
res . set_content ( result . data . at ( " slots " ) . dump ( ) , " application/json " ) ;
2024-03-09 11:27:53 +01:00
res . status = 200 ; // HTTP OK
} ;
const auto handle_metrics = [ & ] ( const httplib : : Request & , httplib : : Response & res ) {
2024-06-04 20:23:39 +02:00
if ( ! params . endpoint_metrics ) {
2024-03-11 10:56:41 +01:00
res_error ( res , format_error_response ( " This server does not support metrics endpoint. " , ERROR_TYPE_NOT_SUPPORTED ) ) ;
2024-03-09 11:27:53 +01:00
return ;
}
// request slots data using task queue
server_task task ;
task . id = ctx_server . queue_tasks . get_new_id ( ) ;
task . id_multi = - 1 ;
task . id_target = - 1 ;
task . type = SERVER_TASK_TYPE_METRICS ;
task . data . push_back ( { { " reset_bucket " , true } } ) ;
ctx_server . queue_results . add_waiting_task_id ( task . id ) ;
ctx_server . queue_tasks . post ( task ) ;
// get the result
server_task_result result = ctx_server . queue_results . recv ( task . id ) ;
ctx_server . queue_results . remove_waiting_task_id ( task . id ) ;
json data = result . data ;
2024-05-08 21:53:08 +02:00
const uint64_t n_prompt_tokens_processed = data . at ( " n_prompt_tokens_processed " ) ;
const uint64_t t_prompt_processing = data . at ( " t_prompt_processing " ) ;
2024-03-09 11:27:53 +01:00
2024-05-08 21:53:08 +02:00
const uint64_t n_tokens_predicted = data . at ( " n_tokens_predicted " ) ;
const uint64_t t_tokens_generation = data . at ( " t_tokens_generation " ) ;
2024-03-09 11:27:53 +01:00
2024-05-08 21:53:08 +02:00
const int32_t kv_cache_used_cells = data . at ( " kv_cache_used_cells " ) ;
2024-03-09 11:27:53 +01:00
// metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
json all_metrics_def = json {
{ " counter " , { {
{ " name " , " prompt_tokens_total " } ,
{ " help " , " Number of prompt tokens processed. " } ,
2024-05-08 21:53:08 +02:00
{ " value " , ( uint64_t ) data . at ( " n_prompt_tokens_processed_total " ) }
2024-03-09 11:27:53 +01:00
} , {
{ " name " , " prompt_seconds_total " } ,
{ " help " , " Prompt process time " } ,
2024-05-08 21:53:08 +02:00
{ " value " , ( uint64_t ) data . at ( " t_prompt_processing_total " ) / 1.e3 }
2024-03-09 11:27:53 +01:00
} , {
{ " name " , " tokens_predicted_total " } ,
{ " help " , " Number of generation tokens processed. " } ,
2024-05-08 21:53:08 +02:00
{ " value " , ( uint64_t ) data . at ( " n_tokens_predicted_total " ) }
2024-03-09 11:27:53 +01:00
} , {
{ " name " , " tokens_predicted_seconds_total " } ,
{ " help " , " Predict process time " } ,
2024-05-08 21:53:08 +02:00
{ " value " , ( uint64_t ) data . at ( " t_tokens_generation_total " ) / 1.e3 }
2024-03-09 11:27:53 +01:00
} } } ,
{ " gauge " , { {
{ " name " , " prompt_tokens_seconds " } ,
{ " help " , " Average prompt throughput in tokens/s. " } ,
{ " value " , n_prompt_tokens_processed ? 1.e3 / t_prompt_processing * n_prompt_tokens_processed : 0. }
} , {
{ " name " , " predicted_tokens_seconds " } ,
{ " help " , " Average generation throughput in tokens/s. " } ,
{ " value " , n_tokens_predicted ? 1.e3 / t_tokens_generation * n_tokens_predicted : 0. }
} , {
{ " name " , " kv_cache_usage_ratio " } ,
{ " help " , " KV-cache usage. 1 means 100 percent usage. " } ,
{ " value " , 1. * kv_cache_used_cells / params . n_ctx }
} , {
{ " name " , " kv_cache_tokens " } ,
{ " help " , " KV-cache tokens. " } ,
2024-05-08 21:53:08 +02:00
{ " value " , ( uint64_t ) data . at ( " kv_cache_tokens_count " ) }
2024-03-09 11:27:53 +01:00
} , {
{ " name " , " requests_processing " } ,
{ " help " , " Number of request processing. " } ,
2024-05-08 21:53:08 +02:00
{ " value " , ( uint64_t ) data . at ( " processing " ) }
2024-03-09 11:27:53 +01:00
} , {
{ " name " , " requests_deferred " } ,
{ " help " , " Number of request deferred. " } ,
2024-05-08 21:53:08 +02:00
{ " value " , ( uint64_t ) data . at ( " deferred " ) }
2024-03-09 11:27:53 +01:00
} } }
} ;
std : : stringstream prometheus ;
for ( const auto & el : all_metrics_def . items ( ) ) {
const auto & type = el . key ( ) ;
const auto & metrics_def = el . value ( ) ;
for ( const auto & metric_def : metrics_def ) {
2024-05-08 21:53:08 +02:00
const std : : string name = metric_def . at ( " name " ) ;
const std : : string help = metric_def . at ( " help " ) ;
2024-03-09 11:27:53 +01:00
auto value = json_value ( metric_def , " value " , 0. ) ;
prometheus < < " # HELP llamacpp: " < < name < < " " < < help < < " \n "
< < " # TYPE llamacpp: " < < name < < " " < < type < < " \n "
< < " llamacpp: " < < name < < " " < < value < < " \n " ;
}
}
2024-05-08 21:53:08 +02:00
const int64_t t_start = data . at ( " t_start " ) ;
2024-03-09 11:27:53 +01:00
res . set_header ( " Process-Start-Time-Unix " , std : : to_string ( t_start ) ) ;
res . set_content ( prometheus . str ( ) , " text/plain; version=0.0.4 " ) ;
res . status = 200 ; // HTTP OK
} ;
2024-06-04 20:23:39 +02:00
const auto handle_slots_save = [ & ctx_server , & res_error , & params ] ( const httplib : : Request & req , httplib : : Response & res , int id_slot ) {
2024-04-08 14:43:30 +02:00
json request_data = json : : parse ( req . body ) ;
2024-05-08 21:53:08 +02:00
std : : string filename = request_data . at ( " filename " ) ;
2024-05-22 19:04:20 +02:00
if ( ! fs_validate_filename ( filename ) ) {
2024-04-08 14:43:30 +02:00
res_error ( res , format_error_response ( " Invalid filename " , ERROR_TYPE_INVALID_REQUEST ) ) ;
return ;
}
2024-06-04 20:23:39 +02:00
std : : string filepath = params . slot_save_path + filename ;
2024-04-08 14:43:30 +02:00
server_task task ;
task . type = SERVER_TASK_TYPE_SLOT_SAVE ;
task . data = {
{ " id_slot " , id_slot } ,
{ " filename " , filename } ,
{ " filepath " , filepath }
} ;
const int id_task = ctx_server . queue_tasks . post ( task ) ;
ctx_server . queue_results . add_waiting_task_id ( id_task ) ;
server_task_result result = ctx_server . queue_results . recv ( id_task ) ;
ctx_server . queue_results . remove_waiting_task_id ( id_task ) ;
if ( result . error ) {
res_error ( res , result . data ) ;
} else {
res . set_content ( result . data . dump ( ) , " application/json " ) ;
}
} ;
2024-06-04 20:23:39 +02:00
const auto handle_slots_restore = [ & ctx_server , & res_error , & params ] ( const httplib : : Request & req , httplib : : Response & res , int id_slot ) {
2024-04-08 14:43:30 +02:00
json request_data = json : : parse ( req . body ) ;
2024-05-08 21:53:08 +02:00
std : : string filename = request_data . at ( " filename " ) ;
2024-05-22 19:04:20 +02:00
if ( ! fs_validate_filename ( filename ) ) {
2024-04-08 14:43:30 +02:00
res_error ( res , format_error_response ( " Invalid filename " , ERROR_TYPE_INVALID_REQUEST ) ) ;
return ;
}
2024-06-04 20:23:39 +02:00
std : : string filepath = params . slot_save_path + filename ;
2024-04-08 14:43:30 +02:00
server_task task ;
task . type = SERVER_TASK_TYPE_SLOT_RESTORE ;
task . data = {
{ " id_slot " , id_slot } ,
{ " filename " , filename } ,
{ " filepath " , filepath }
} ;
const int id_task = ctx_server . queue_tasks . post ( task ) ;
ctx_server . queue_results . add_waiting_task_id ( id_task ) ;
server_task_result result = ctx_server . queue_results . recv ( id_task ) ;
ctx_server . queue_results . remove_waiting_task_id ( id_task ) ;
if ( result . error ) {
res_error ( res , result . data ) ;
} else {
res . set_content ( result . data . dump ( ) , " application/json " ) ;
}
} ;
const auto handle_slots_erase = [ & ctx_server , & res_error ] ( const httplib : : Request & /* req */ , httplib : : Response & res , int id_slot ) {
server_task task ;
task . type = SERVER_TASK_TYPE_SLOT_ERASE ;
task . data = {
{ " id_slot " , id_slot } ,
} ;
const int id_task = ctx_server . queue_tasks . post ( task ) ;
ctx_server . queue_results . add_waiting_task_id ( id_task ) ;
server_task_result result = ctx_server . queue_results . recv ( id_task ) ;
ctx_server . queue_results . remove_waiting_task_id ( id_task ) ;
if ( result . error ) {
res_error ( res , result . data ) ;
} else {
res . set_content ( result . data . dump ( ) , " application/json " ) ;
}
} ;
const auto handle_slots_action = [ & res_error , & handle_slots_save , & handle_slots_restore , & handle_slots_erase ] ( const httplib : : Request & req , httplib : : Response & res ) {
res . set_header ( " Access-Control-Allow-Origin " , req . get_header_value ( " Origin " ) ) ;
std : : string id_slot_str = req . path_params . at ( " id_slot " ) ;
int id_slot ;
try {
id_slot = std : : stoi ( id_slot_str ) ;
} catch ( const std : : exception & ) {
res_error ( res , format_error_response ( " Invalid slot ID " , ERROR_TYPE_INVALID_REQUEST ) ) ;
return ;
}
std : : string action = req . get_param_value ( " action " ) ;
if ( action = = " save " ) {
handle_slots_save ( req , res , id_slot ) ;
} else if ( action = = " restore " ) {
handle_slots_restore ( req , res , id_slot ) ;
} else if ( action = = " erase " ) {
handle_slots_erase ( req , res , id_slot ) ;
} else {
res_error ( res , format_error_response ( " Invalid action " , ERROR_TYPE_INVALID_REQUEST ) ) ;
}
} ;
2024-03-09 11:27:53 +01:00
const auto handle_props = [ & ctx_server ] ( const httplib : : Request & req , httplib : : Response & res ) {
2024-03-07 10:41:53 +01:00
res . set_header ( " Access-Control-Allow-Origin " , req . get_header_value ( " Origin " ) ) ;
json data = {
2024-05-11 17:28:10 +02:00
{ " system_prompt " , ctx_server . system_prompt . c_str ( ) } ,
2024-03-07 10:41:53 +01:00
{ " default_generation_settings " , ctx_server . default_generation_settings_for_props } ,
{ " total_slots " , ctx_server . params . n_parallel }
} ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-03-07 10:41:53 +01:00
res . set_content ( data . dump ( ) , " application/json; charset=utf-8 " ) ;
2024-03-09 11:27:53 +01:00
} ;
2024-03-07 10:41:53 +01:00
2024-03-11 10:56:41 +01:00
const auto handle_completions = [ & ctx_server , & res_error ] ( const httplib : : Request & req , httplib : : Response & res ) {
2024-03-07 10:41:53 +01:00
res . set_header ( " Access-Control-Allow-Origin " , req . get_header_value ( " Origin " ) ) ;
json data = json : : parse ( req . body ) ;
const int id_task = ctx_server . queue_tasks . get_new_id ( ) ;
ctx_server . queue_results . add_waiting_task_id ( id_task ) ;
ctx_server . request_completion ( id_task , - 1 , data , false , false ) ;
if ( ! json_value ( data , " stream " , false ) ) {
server_task_result result = ctx_server . queue_results . recv ( id_task ) ;
if ( ! result . error & & result . stop ) {
res . set_content ( result . data . dump ( - 1 , ' ' , false , json : : error_handler_t : : replace ) , " application/json; charset=utf-8 " ) ;
} else {
2024-03-11 10:56:41 +01:00
res_error ( res , result . data ) ;
2024-03-07 10:41:53 +01:00
}
ctx_server . queue_results . remove_waiting_task_id ( id_task ) ;
} else {
const auto chunked_content_provider = [ id_task , & ctx_server ] ( size_t , httplib : : DataSink & sink ) {
while ( true ) {
server_task_result result = ctx_server . queue_results . recv ( id_task ) ;
if ( ! result . error ) {
const std : : string str =
" data: " +
result . data . dump ( - 1 , ' ' , false , json : : error_handler_t : : replace ) +
" \n \n " ;
LOG_VERBOSE ( " data stream " , {
{ " to_send " , str }
} ) ;
if ( ! sink . write ( str . c_str ( ) , str . size ( ) ) ) {
ctx_server . queue_results . remove_waiting_task_id ( id_task ) ;
return false ;
2023-08-25 12:32:45 +02:00
}
2024-01-26 13:42:20 +01:00
2024-03-07 10:41:53 +01:00
if ( result . stop ) {
break ;
}
} else {
const std : : string str =
" error: " +
result . data . dump ( - 1 , ' ' , false , json : : error_handler_t : : replace ) +
" \n \n " ;
2023-08-25 12:32:45 +02:00
2024-03-07 10:41:53 +01:00
LOG_VERBOSE ( " data stream " , {
{ " to_send " , str }
} ) ;
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-03-07 10:41:53 +01:00
if ( ! sink . write ( str . c_str ( ) , str . size ( ) ) ) {
ctx_server . queue_results . remove_waiting_task_id ( id_task ) ;
return false ;
}
break ;
}
2023-10-22 21:53:08 +02:00
}
2023-07-02 23:38:44 +02:00
2024-03-07 10:41:53 +01:00
ctx_server . queue_results . remove_waiting_task_id ( id_task ) ;
sink . done ( ) ;
2023-11-25 10:29:06 +01:00
2024-03-07 10:41:53 +01:00
return true ;
} ;
2023-11-25 10:29:06 +01:00
2024-03-07 10:41:53 +01:00
auto on_complete = [ id_task , & ctx_server ] ( bool ) {
// cancel
ctx_server . request_cancel ( id_task ) ;
ctx_server . queue_results . remove_waiting_task_id ( id_task ) ;
} ;
res . set_chunked_content_provider ( " text/event-stream " , chunked_content_provider , on_complete ) ;
}
2024-03-07 11:42:39 +01:00
} ;
2024-03-09 11:27:53 +01:00
const auto handle_models = [ & params , & model_meta ] ( const httplib : : Request & req , httplib : : Response & res ) {
2024-03-07 10:41:53 +01:00
res . set_header ( " Access-Control-Allow-Origin " , req . get_header_value ( " Origin " ) ) ;
json models = {
{ " object " , " list " } ,
{ " data " , {
{
{ " id " , params . model_alias } ,
{ " object " , " model " } ,
{ " created " , std : : time ( 0 ) } ,
{ " owned_by " , " llamacpp " } ,
{ " meta " , model_meta }
} ,
} }
} ;
res . set_content ( models . dump ( ) , " application/json; charset=utf-8 " ) ;
2024-03-09 11:27:53 +01:00
} ;
2024-03-07 10:41:53 +01:00
2024-06-04 20:23:39 +02:00
const auto handle_chat_completions = [ & ctx_server , & params , & res_error ] ( const httplib : : Request & req , httplib : : Response & res ) {
2024-02-28 09:39:15 +01:00
res . set_header ( " Access-Control-Allow-Origin " , req . get_header_value ( " Origin " ) ) ;
2024-06-04 20:23:39 +02:00
json data = oaicompat_completion_params_parse ( ctx_server . model , json : : parse ( req . body ) , params . chat_template ) ;
2024-03-07 10:41:53 +01:00
const int id_task = ctx_server . queue_tasks . get_new_id ( ) ;
ctx_server . queue_results . add_waiting_task_id ( id_task ) ;
ctx_server . request_completion ( id_task , - 1 , data , false , false ) ;
2023-11-25 10:29:06 +01:00
2024-03-11 09:09:32 +01:00
const auto completion_id = gen_chatcmplid ( ) ;
2024-02-28 09:39:15 +01:00
if ( ! json_value ( data , " stream " , false ) ) {
2024-03-07 10:41:53 +01:00
server_task_result result = ctx_server . queue_results . recv ( id_task ) ;
2023-11-25 10:29:06 +01:00
2024-02-28 09:39:15 +01:00
if ( ! result . error & & result . stop ) {
2024-03-11 09:09:32 +01:00
json result_oai = format_final_response_oaicompat ( data , result . data , completion_id ) ;
2023-11-25 10:29:06 +01:00
2024-03-07 10:41:53 +01:00
res . set_content ( result_oai . dump ( - 1 , ' ' , false , json : : error_handler_t : : replace ) , " application/json; charset=utf-8 " ) ;
2024-02-28 09:39:15 +01:00
} else {
2024-03-11 10:56:41 +01:00
res_error ( res , result . data ) ;
2024-02-28 09:39:15 +01:00
}
2024-03-07 10:41:53 +01:00
ctx_server . queue_results . remove_waiting_task_id ( id_task ) ;
2024-02-28 09:39:15 +01:00
} else {
2024-03-11 09:09:32 +01:00
const auto chunked_content_provider = [ id_task , & ctx_server , completion_id ] ( size_t , httplib : : DataSink & sink ) {
2024-02-28 09:39:15 +01:00
while ( true ) {
2024-03-07 10:41:53 +01:00
server_task_result result = ctx_server . queue_results . recv ( id_task ) ;
if ( ! result . error ) {
2024-03-11 09:09:32 +01:00
std : : vector < json > result_array = format_partial_response_oaicompat ( result . data , completion_id ) ;
2023-11-25 10:29:06 +01:00
2024-03-07 10:41:53 +01:00
for ( auto it = result_array . begin ( ) ; it ! = result_array . end ( ) ; + + it ) {
2024-02-28 09:39:15 +01:00
if ( ! it - > empty ( ) ) {
2023-11-25 10:29:06 +01:00
const std : : string str =
2024-02-28 09:39:15 +01:00
" data: " +
it - > dump ( - 1 , ' ' , false , json : : error_handler_t : : replace ) +
2023-11-25 10:29:06 +01:00
" \n \n " ;
LOG_VERBOSE ( " data stream " , { { " to_send " , str } } ) ;
if ( ! sink . write ( str . c_str ( ) , str . size ( ) ) ) {
2024-03-07 10:41:53 +01:00
ctx_server . queue_results . remove_waiting_task_id ( id_task ) ;
2023-11-25 10:29:06 +01:00
return false ;
}
}
}
2024-03-07 10:41:53 +01:00
if ( result . stop ) {
2024-02-28 09:39:15 +01:00
break ;
}
} else {
const std : : string str =
" error: " +
2024-03-07 10:41:53 +01:00
result . data . dump ( - 1 , ' ' , false , json : : error_handler_t : : replace ) +
2024-02-28 09:39:15 +01:00
" \n \n " ;
LOG_VERBOSE ( " data stream " , { { " to_send " , str } } ) ;
if ( ! sink . write ( str . c_str ( ) , str . size ( ) ) ) {
2024-03-07 10:41:53 +01:00
ctx_server . queue_results . remove_waiting_task_id ( id_task ) ;
2024-02-28 09:39:15 +01:00
return false ;
}
break ;
}
}
sink . done ( ) ;
2024-03-07 10:41:53 +01:00
ctx_server . queue_results . remove_waiting_task_id ( id_task ) ;
2024-02-28 09:39:15 +01:00
return true ;
} ;
2023-11-25 10:29:06 +01:00
2024-03-07 10:41:53 +01:00
auto on_complete = [ id_task , & ctx_server ] ( bool ) {
2024-02-28 09:39:15 +01:00
// cancel request
2024-03-07 10:41:53 +01:00
ctx_server . request_cancel ( id_task ) ;
ctx_server . queue_results . remove_waiting_task_id ( id_task ) ;
2024-02-28 09:39:15 +01:00
} ;
2023-11-25 10:29:06 +01:00
2024-02-28 09:39:15 +01:00
res . set_chunked_content_provider ( " text/event-stream " , chunked_content_provider , on_complete ) ;
}
} ;
2024-03-11 10:56:41 +01:00
const auto handle_infill = [ & ctx_server , & res_error ] ( const httplib : : Request & req , httplib : : Response & res ) {
2024-03-07 10:41:53 +01:00
res . set_header ( " Access-Control-Allow-Origin " , req . get_header_value ( " Origin " ) ) ;
2023-10-02 09:42:02 +02:00
2024-03-07 10:41:53 +01:00
json data = json : : parse ( req . body ) ;
2023-10-02 09:42:02 +02:00
2024-03-07 10:41:53 +01:00
const int id_task = ctx_server . queue_tasks . get_new_id ( ) ;
2023-10-02 09:42:02 +02:00
2024-03-07 10:41:53 +01:00
ctx_server . queue_results . add_waiting_task_id ( id_task ) ;
ctx_server . request_completion ( id_task , - 1 , data , true , false ) ;
2023-10-02 09:42:02 +02:00
2024-03-07 10:41:53 +01:00
if ( ! json_value ( data , " stream " , false ) ) {
server_task_result result = ctx_server . queue_results . recv ( id_task ) ;
if ( ! result . error & & result . stop ) {
res . set_content ( result . data . dump ( - 1 , ' ' , false , json : : error_handler_t : : replace ) , " application/json; charset=utf-8 " ) ;
} else {
2024-03-11 10:56:41 +01:00
res_error ( res , result . data ) ;
2024-03-07 10:41:53 +01:00
}
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
2024-03-07 10:41:53 +01:00
ctx_server . queue_results . remove_waiting_task_id ( id_task ) ;
} else {
const auto chunked_content_provider = [ id_task , & ctx_server ] ( size_t , httplib : : DataSink & sink ) {
while ( true ) {
server_task_result result = ctx_server . queue_results . recv ( id_task ) ;
if ( ! result . error ) {
const std : : string str =
" data: " +
result . data . dump ( - 1 , ' ' , false , json : : error_handler_t : : replace ) +
" \n \n " ;
2023-10-20 20:07:23 +02:00
2024-03-07 10:41:53 +01:00
LOG_VERBOSE ( " data stream " , {
{ " to_send " , str }
} ) ;
2023-10-20 20:07:23 +02:00
2024-03-07 10:41:53 +01:00
if ( ! sink . write ( str . c_str ( ) , str . size ( ) ) ) {
ctx_server . queue_results . remove_waiting_task_id ( id_task ) ;
return false ;
}
2023-06-20 00:12:39 +02:00
2024-03-07 10:41:53 +01:00
if ( result . stop ) {
break ;
}
} else {
break ;
}
2023-10-22 21:53:08 +02:00
}
2023-12-29 15:22:10 +01:00
2024-03-07 10:41:53 +01:00
ctx_server . queue_results . remove_waiting_task_id ( id_task ) ;
sink . done ( ) ;
2023-12-29 15:22:10 +01:00
2024-03-07 10:41:53 +01:00
return true ;
} ;
2024-01-26 13:42:20 +01:00
2024-03-07 10:41:53 +01:00
auto on_complete = [ id_task , & ctx_server ] ( bool ) {
ctx_server . request_cancel ( id_task ) ;
} ;
2024-01-26 13:42:20 +01:00
2024-03-07 10:41:53 +01:00
res . set_chunked_content_provider ( " text/event-stream " , chunked_content_provider , on_complete ) ;
}
2024-03-09 11:27:53 +01:00
} ;
2024-01-29 14:48:10 +01:00
2024-03-09 11:27:53 +01:00
const auto handle_tokenize = [ & ctx_server ] ( const httplib : : Request & req , httplib : : Response & res ) {
2024-03-07 10:41:53 +01:00
res . set_header ( " Access-Control-Allow-Origin " , req . get_header_value ( " Origin " ) ) ;
const json body = json : : parse ( req . body ) ;
2024-01-29 14:48:10 +01:00
2024-03-07 10:41:53 +01:00
std : : vector < llama_token > tokens ;
if ( body . count ( " content " ) ! = 0 ) {
2024-05-08 14:27:58 +02:00
const bool add_special = json_value ( body , " add_special " , false ) ;
2024-05-08 21:53:08 +02:00
tokens = ctx_server . tokenize ( body . at ( " content " ) , add_special ) ;
2024-03-07 10:41:53 +01:00
}
const json data = format_tokenizer_response ( tokens ) ;
return res . set_content ( data . dump ( ) , " application/json; charset=utf-8 " ) ;
2024-03-09 11:27:53 +01:00
} ;
2024-01-29 14:48:10 +01:00
2024-03-09 11:27:53 +01:00
const auto handle_detokenize = [ & ctx_server ] ( const httplib : : Request & req , httplib : : Response & res ) {
2024-03-07 10:41:53 +01:00
res . set_header ( " Access-Control-Allow-Origin " , req . get_header_value ( " Origin " ) ) ;
const json body = json : : parse ( req . body ) ;
2024-01-29 14:48:10 +01:00
2024-03-07 10:41:53 +01:00
std : : string content ;
if ( body . count ( " tokens " ) ! = 0 ) {
2024-05-08 21:53:08 +02:00
const std : : vector < llama_token > tokens = body . at ( " tokens " ) ;
2024-03-07 10:41:53 +01:00
content = tokens_to_str ( ctx_server . ctx , tokens . cbegin ( ) , tokens . cend ( ) ) ;
}
2024-01-29 14:48:10 +01:00
2024-03-07 10:41:53 +01:00
const json data = format_detokenized_response ( content ) ;
return res . set_content ( data . dump ( ) , " application/json; charset=utf-8 " ) ;
2024-03-09 11:27:53 +01:00
} ;
2024-01-29 14:48:10 +01:00
2024-03-11 10:56:41 +01:00
const auto handle_embeddings = [ & params , & ctx_server , & res_error ] ( const httplib : : Request & req , httplib : : Response & res ) {
2024-03-07 10:41:53 +01:00
res . set_header ( " Access-Control-Allow-Origin " , req . get_header_value ( " Origin " ) ) ;
if ( ! params . embedding ) {
res . status = 501 ;
res . set_content ( " This server does not support embeddings. Start it with `--embeddings` " , " text/plain; charset=utf-8 " ) ;
return ;
}
2024-01-29 14:48:10 +01:00
2024-03-07 10:41:53 +01:00
const json body = json : : parse ( req . body ) ;
2024-03-09 11:27:53 +01:00
bool is_openai = false ;
2024-03-07 10:41:53 +01:00
2024-03-13 11:39:11 +01:00
// an input prompt can be a string or a list of tokens (integer)
json prompt ;
2024-03-09 11:27:53 +01:00
if ( body . count ( " input " ) ! = 0 ) {
is_openai = true ;
2024-05-08 21:53:08 +02:00
prompt = body . at ( " input " ) ;
2024-03-09 11:27:53 +01:00
} else if ( body . count ( " content " ) ! = 0 ) {
2024-03-13 11:39:11 +01:00
// with "content", we only support single prompt
2024-05-08 21:53:08 +02:00
prompt = std : : vector < std : : string > { body . at ( " content " ) } ;
2024-03-07 10:41:53 +01:00
} else {
2024-03-11 10:56:41 +01:00
res_error ( res , format_error_response ( " \" input \" or \" content \" must be provided " , ERROR_TYPE_INVALID_REQUEST ) ) ;
return ;
2024-03-07 10:41:53 +01:00
}
2024-03-13 11:39:11 +01:00
// create and queue the task
json responses ;
{
2024-03-09 11:27:53 +01:00
const int id_task = ctx_server . queue_tasks . get_new_id ( ) ;
ctx_server . queue_results . add_waiting_task_id ( id_task ) ;
2024-03-13 11:39:11 +01:00
ctx_server . request_completion ( id_task , - 1 , { { " prompt " , prompt } } , false , true ) ;
2024-03-07 10:41:53 +01:00
2024-03-09 11:27:53 +01:00
// get the result
server_task_result result = ctx_server . queue_results . recv ( id_task ) ;
ctx_server . queue_results . remove_waiting_task_id ( id_task ) ;
2024-03-11 10:56:41 +01:00
if ( ! result . error ) {
2024-03-13 11:39:11 +01:00
if ( result . data . count ( " results " ) ) {
// result for multi-task
2024-05-08 21:53:08 +02:00
responses = result . data . at ( " results " ) ;
2024-03-13 11:39:11 +01:00
} else {
// result for single task
responses = std : : vector < json > { result . data } ;
}
2024-03-11 10:56:41 +01:00
} else {
// error received, ignore everything else
res_error ( res , result . data ) ;
return ;
}
2024-03-09 11:27:53 +01:00
}
// write JSON response
2024-03-13 11:39:11 +01:00
json root = is_openai
? format_embeddings_response_oaicompat ( body , responses )
: responses [ 0 ] ;
2024-03-09 11:27:53 +01:00
return res . set_content ( root . dump ( ) , " application/json; charset=utf-8 " ) ;
} ;
2024-03-07 10:41:53 +01:00
2024-03-13 11:39:11 +01:00
auto handle_static_file = [ ] ( unsigned char * content , size_t len , const char * mime_type ) {
return [ content , len , mime_type ] ( const httplib : : Request & , httplib : : Response & res ) {
res . set_content ( reinterpret_cast < const char * > ( content ) , len , mime_type ) ;
return false ;
} ;
} ;
2024-03-09 11:27:53 +01:00
//
// Router
//
2024-03-07 10:41:53 +01:00
2024-03-09 11:27:53 +01:00
// register static assets routes
2024-06-04 20:23:39 +02:00
if ( ! params . public_path . empty ( ) ) {
2024-03-09 11:27:53 +01:00
// Set the base directory for serving static files
2024-06-04 20:23:39 +02:00
svr - > set_base_dir ( params . public_path ) ;
2024-03-09 11:27:53 +01:00
}
2024-06-04 20:23:39 +02:00
2024-03-09 11:27:53 +01:00
// using embedded static files
2024-06-04 20:23:39 +02:00
svr - > Get ( " / " , handle_static_file ( index_html , index_html_len , " text/html; charset=utf-8 " ) ) ;
svr - > Get ( " /index.js " , handle_static_file ( index_js , index_js_len , " text/javascript; charset=utf-8 " ) ) ;
svr - > Get ( " /completion.js " , handle_static_file ( completion_js , completion_js_len , " text/javascript; charset=utf-8 " ) ) ;
svr - > Get ( " /json-schema-to-grammar.mjs " , handle_static_file ( json_schema_to_grammar_mjs , json_schema_to_grammar_mjs_len , " text/javascript; charset=utf-8 " ) ) ;
2024-06-01 21:31:48 +02:00
// add new-ui files
2024-06-04 20:23:39 +02:00
svr - > Get ( " /colorthemes.css " , handle_static_file ( colorthemes_css , colorthemes_css_len , " text/css; charset=utf-8 " ) ) ;
svr - > Get ( " /style.css " , handle_static_file ( style_css , style_css_len , " text/css; charset=utf-8 " ) ) ;
2024-06-01 21:31:48 +02:00
svr - > Get ( " /theme-beeninorder.css " , handle_static_file ( theme_beeninorder_css , theme_beeninorder_css_len , " text/css; charset=utf-8 " ) ) ;
2024-06-04 20:23:39 +02:00
svr - > Get ( " /theme-ketivah.css " , handle_static_file ( theme_ketivah_css , theme_ketivah_css_len , " text/css; charset=utf-8 " ) ) ;
svr - > Get ( " /theme-mangotango.css " , handle_static_file ( theme_mangotango_css , theme_mangotango_css_len , " text/css; charset=utf-8 " ) ) ;
svr - > Get ( " /theme-playground.css " , handle_static_file ( theme_playground_css , theme_playground_css_len , " text/css; charset=utf-8 " ) ) ;
svr - > Get ( " /theme-polarnight.css " , handle_static_file ( theme_polarnight_css , theme_polarnight_css_len , " text/css; charset=utf-8 " ) ) ;
svr - > Get ( " /theme-snowstorm.css " , handle_static_file ( theme_snowstorm_css , theme_snowstorm_css_len , " text/css; charset=utf-8 " ) ) ;
svr - > Get ( " /index-new.html " , handle_static_file ( index_new_html , index_new_html_len , " text/html; charset=utf-8 " ) ) ;
svr - > Get ( " /system-prompts.js " , handle_static_file ( system_prompts_js , system_prompts_js_len , " text/javascript; charset=utf-8 " ) ) ;
svr - > Get ( " /prompt-formats.js " , handle_static_file ( prompt_formats_js , prompt_formats_js_len , " text/javascript; charset=utf-8 " ) ) ;
2024-03-09 11:27:53 +01:00
// register API routes
svr - > Get ( " /health " , handle_health ) ;
svr - > Get ( " /slots " , handle_slots ) ;
svr - > Get ( " /metrics " , handle_metrics ) ;
svr - > Get ( " /props " , handle_props ) ;
svr - > Get ( " /v1/models " , handle_models ) ;
svr - > Post ( " /completion " , handle_completions ) ; // legacy
svr - > Post ( " /completions " , handle_completions ) ;
svr - > Post ( " /v1/completions " , handle_completions ) ;
svr - > Post ( " /chat/completions " , handle_chat_completions ) ;
svr - > Post ( " /v1/chat/completions " , handle_chat_completions ) ;
svr - > Post ( " /infill " , handle_infill ) ;
svr - > Post ( " /embedding " , handle_embeddings ) ; // legacy
svr - > Post ( " /embeddings " , handle_embeddings ) ;
svr - > Post ( " /v1/embeddings " , handle_embeddings ) ;
svr - > Post ( " /tokenize " , handle_tokenize ) ;
svr - > Post ( " /detokenize " , handle_detokenize ) ;
2024-06-04 20:23:39 +02:00
if ( ! params . slot_save_path . empty ( ) ) {
2024-04-08 14:43:30 +02:00
// only enable slot endpoints if slot_save_path is set
svr - > Post ( " /slots/:id_slot " , handle_slots_action ) ;
}
2023-05-21 19:51:18 +02:00
2024-03-09 11:27:53 +01:00
//
// Start the server
//
2024-06-04 20:23:39 +02:00
if ( params . n_threads_http < 1 ) {
2024-03-03 08:48:36 +01:00
// +2 threads for monitoring endpoints
2024-06-04 20:23:39 +02:00
params . n_threads_http = std : : max ( params . n_parallel + 2 , ( int32_t ) std : : thread : : hardware_concurrency ( ) - 1 ) ;
2024-03-01 10:08:08 +01:00
}
2024-06-04 20:23:39 +02:00
log_data [ " n_threads_http " ] = std : : to_string ( params . n_threads_http ) ;
svr - > new_task_queue = [ & params ] { return new httplib : : ThreadPool ( params . n_threads_http ) ; } ;
2024-03-01 10:08:08 +01:00
2024-02-24 12:28:55 +01:00
LOG_INFO ( " HTTP server listening " , log_data ) ;
2024-03-07 10:41:53 +01:00
2024-02-24 12:28:55 +01:00
// run the HTTP server in a thread - see comment below
2024-03-07 10:41:53 +01:00
std : : thread t ( [ & ] ( ) {
2024-03-09 10:57:09 +01:00
if ( ! svr - > listen_after_bind ( ) ) {
2024-03-07 10:41:53 +01:00
state . store ( SERVER_STATE_ERROR ) ;
return 1 ;
}
2024-02-24 12:28:55 +01:00
2024-03-07 10:41:53 +01:00
return 0 ;
} ) ;
2024-02-24 12:28:55 +01:00
2024-03-07 10:41:53 +01:00
ctx_server . queue_tasks . on_new_task ( std : : bind (
& server_context : : process_single_task , & ctx_server , std : : placeholders : : _1 ) ) ;
ctx_server . queue_tasks . on_finish_multitask ( std : : bind (
& server_context : : on_finish_multitask , & ctx_server , std : : placeholders : : _1 ) ) ;
2024-03-11 10:56:41 +01:00
ctx_server . queue_tasks . on_update_slots ( std : : bind (
2024-03-07 10:41:53 +01:00
& server_context : : update_slots , & ctx_server ) ) ;
ctx_server . queue_results . on_multitask_update ( std : : bind (
& server_queue : : update_multitask ,
& ctx_server . queue_tasks ,
2024-01-26 13:42:20 +01:00
std : : placeholders : : _1 ,
std : : placeholders : : _2 ,
std : : placeholders : : _3
) ) ;
2024-02-18 17:23:16 +01:00
shutdown_handler = [ & ] ( int ) {
2024-03-07 10:41:53 +01:00
ctx_server . queue_tasks . terminate ( ) ;
2024-02-18 17:23:16 +01:00
} ;
# if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
struct sigaction sigint_action ;
sigint_action . sa_handler = signal_handler ;
sigemptyset ( & sigint_action . sa_mask ) ;
sigint_action . sa_flags = 0 ;
sigaction ( SIGINT , & sigint_action , NULL ) ;
2024-03-28 09:50:48 +01:00
sigaction ( SIGTERM , & sigint_action , NULL ) ;
2024-02-18 17:23:16 +01:00
# elif defined (_WIN32)
auto console_ctrl_handler = + [ ] ( DWORD ctrl_type ) - > BOOL {
return ( ctrl_type = = CTRL_C_EVENT ) ? ( signal_handler ( SIGINT ) , true ) : false ;
} ;
SetConsoleCtrlHandler ( reinterpret_cast < PHANDLER_ROUTINE > ( console_ctrl_handler ) , true ) ;
# endif
2024-03-07 10:41:53 +01:00
ctx_server . queue_tasks . start_loop ( ) ;
2024-03-09 10:57:09 +01:00
svr - > stop ( ) ;
2023-10-22 21:53:08 +02:00
t . join ( ) ;
2023-07-10 17:49:56 +02:00
2023-10-22 21:53:08 +02:00
llama_backend_free ( ) ;
2024-03-07 10:41:53 +01:00
Server Example Refactor and Improvements (#1570)
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
2023-06-17 13:53:04 +02:00
return 0 ;
2023-05-21 19:51:18 +02:00
}