Commit Graph

131 Commits

Author SHA1 Message Date
Georgi Gerganov
2917e6b528
Merge branch 'master' into gg/imatrix-gpu-4931
ggml-ci
2024-01-17 18:43:45 +02:00
Justine Tunney
a0b3ac8c48
ggml : introduce GGML_CALL function annotation (#4850)
This change makes it possible to build ggml-cuda.cu and ggml-metal.m as
independent dynamic shared objects, that may be conditionally linked at
runtime in a multiplatform binary. It introduces a GGML_CALL annotation
that documents which functions have a cyclic call relationship, between
the application code and GPU modules.

This change does nothing, unless the build defines -DGGML_MULTIPLATFORM
which causes back-references and function pointers to conform to MS ABI
which is supported by NVCC, ROCm, XCode, GCC and Clang across platforms
2024-01-16 13:16:33 +02:00
Georgi Gerganov
0b2fca9a9f
imatrix : offload to GPU support 2024-01-15 16:47:40 +02:00
Kawrakow
147b17ac94
2-bit quantizations (#4897)
* imatrix: load

* imatrix: WIP

* imatrix: Add Q2_K quantization

* imatrix: also guard against Q2_K_S quantization without importance matrix

* imatrix: guard even more against low-bit quantization misuse

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-14 09:45:56 +02:00
slaren
e7e4df031b
llama : ggml-backend integration (#4766)
* llama : ggml-backend integration

* ggml-backend : add names to buffers

* fix unmap after loading

* batched-bench : add tensor_split param

* llama : check for null tensor_split

* ggml-backend : increase GGML_MAX_BACKENDS

* improve graph splitting, partial fix for --no-kv-offload

* cuda : add ggml-backend split buffer support

* cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available)

* ggml : fix null backend dereference (#4807)

* ggml : fix null backend dereference

* ggml : also check ggml_backend_is_cpu

* test-backend-ops : check buffer allocation failures

* llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row)

* ggml : fix mul_mat_id work size

* llama : rewrite session kv load/set without graphs

* minor

* llama : only initialize used backends, free backends on context free

* llama : abort ctx if cuda backend init fails

* llama : rewrite lora with ggml-backend and compute on CPU

ggml-ci

* llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer

* opencl : add ggml-backend buffer type

* cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf)

* llama : on Metal, by default offload the full model

ggml-ci

* metal : page align the data ptr (#4854)

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* cuda : fix split buffer free

* address review comments

* llama-bench : add split-mode parameter

* fix whitespace

* opencl : fix double initialization

* server : add --split-mode parameter

* use async copy and compute to improve multi-gpu performance

ggml-ci

* use async memcpys to copy the graph outputs to the CPU

* fix opencl

* use a host buffer for the cpu compute buffer for faster copies to the gpu

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 20:07:38 +01:00
Kawrakow
326b418b59
Importance Matrix calculation (#4861)
* imatrix: 1st version

* imatrix: WIP

* Cleanup

* Update examples/imatrix/imatrix.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-12 06:59:57 +01:00
Kawrakow
49662cbed3
ggml : SOTA 2-bit quants (add IQ2_XS) (#4856)
* iq2_xs: basics

* iq2_xs: this should have been in the basics

* iq2_xs: CUDA and scalar CPU works

* iq2_xs: WIP Metal

* iq2_xs: Metal now works

* iq2_xs: working, but dog slow, ARM_NEON dot product

* iq2_xs: better ARM_NEON dot product

We are now at 19.5 t/s for TG-128 and 61 t/s for PP-512 when
running on the CPU.

* iq2_xs: AVX2 dot product - 19.5 t/s

* iq2_xs: faster AVX2 dit product

21.4 t/s for TG-128, 59.2 t/s for PP-512.
The latter is 2x compared to the previous version.

* iq2_xs: had forgotten to delete iq2-data.h

* Add llama enum for IQ2_XS

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-11 21:39:39 +02:00
Timothy Cronin
f85a973aa1
ggml : remove ggml_cpy_inplace and ggml_cont_inplace (ggml/693) 2024-01-11 09:39:05 +02:00
leejet
e739de7909
ggml : change GGML_MAX_NAME at compile time (ggml/682)
* change GGML_MAX_NAME to 128

* allow controlling the value of GGML_MAX_NAME through external macro definitions
2024-01-11 09:39:05 +02:00
Kawrakow
dd5ae06405
SOTA 2-bit quants (#4773)
* iq2_xxs: basics

* iq2_xxs: scalar and AVX2 dot products

Needed to change Q8_K to have quants in the -127...127 range,
else the IQ2_XXS AVX implementation becomes very awkward.
The alternative would have been to use Q8_0 instead. Perhaps
I'll change later, for now this is what we have.

* iq2_xxs: ARM_NEON dot product

Somehow strangely slow (112 ms/token).

* iq2_xxs: WIP Metal

Dequantize works, something is still wrong with the
dot product.

* iq2_xxs: Metal dot product now works

We have
PP-512 = 475 t/s
TG-128 = 47.3 t/s

Not the greatest performance, but not complete garbage either.

* iq2_xxs: slighty faster dot product

TG-128 is now 48.4 t/s

* iq2_xxs: slighty faster dot product

TG-128 is now 50.9 t/s

* iq2_xxs: even faster Metal dot product

TG-128 is now 54.1 t/s.

Strangely enough, putting the signs lookup table
into shared memory has a bigger impact than the
grid values being in shared memory.

* iq2_xxs: dequantize CUDA kernel - fix conflict with master

* iq2_xxs: quantized CUDA dot product (MMVQ)

We get TG-128 = 153.1 t/s

* iq2_xxs: slightly faster CUDA dot product

TG-128 is now at 155.1 t/s.

* iq2_xxs: add to llama ftype enum

* iq2_xxs: fix MoE on Metal

* Fix missing MMQ ops when on hipBLAS

I had put the ggml_supports_mmq call at the wrong place.

* Fix bug in qequantize_row_iq2_xxs

The 0.25f factor was missing.
Great detective work by @ggerganov!

* Fixing tests

* PR suggestion

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 16:02:32 +01:00
automaticcat
24a447e20a
ggml : add ggml_cpu_has_avx_vnni() (#4589)
* feat: add avx_vnni based on intel documents

* ggml: add avx vnni based on intel document

* llama: add avx vnni information display

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* Update ggml.c

Fix indentation upgate

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-30 10:07:48 +02:00
slaren
5bf3953d7e
cuda : improve cuda pool efficiency using virtual memory (#4606)
* cuda : improve cuda pool efficiency using virtual memory

* fix mixtral

* fix cmake build

* check for vmm support, disable for hip

ggml-ci

* fix hip build

* clarify granularity

* move all caps to g_device_caps

* refactor error checking

* add cuda_pool_alloc, refactor most pool allocations

ggml-ci

* fix hip build

* CUBLAS_TF32_TENSOR_OP_MATH is not a macro

* more hip crap

* llama : fix msvc warnings

* ggml : fix msvc warnings

* minor

* minor

* cuda : fallback to CPU on host buffer alloc fail

* Update ggml-cuda.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml-cuda.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* ensure allocations are always aligned

* act_size -> actual_size

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2023-12-24 14:34:22 +01:00
bobqianic
0137ef88ea
ggml : extend enum ggml_log_level with GGML_LOG_LEVEL_DEBUG (#4579) 2023-12-22 08:47:01 +02:00
Georgi Gerganov
afefa319f1
ggml : change ggml_scale to take a float instead of tensor (#4573)
* ggml : change ggml_scale to take a float instead of tensor

* ggml : fix CPU implementation

* tests : fix test-grad0

ggml-ci
2023-12-21 23:20:49 +02:00
slaren
d232aca5a7
llama : initial ggml-backend integration (#4520)
* llama : initial ggml-backend integration

* add ggml-metal

* cuda backend can be used though ggml-backend with LLAMA_GGML_BACKEND_CUDA_TEST
access all tensor data with ggml_backend_tensor_get/set

* add ggml_backend_buffer_clear
zero-init KV cache buffer

* add ggml_backend_buffer_is_hos, used to avoid copies if possible when accesing tensor data

* disable gpu backends with ngl 0

* more accurate mlock

* unmap offloaded part of the model

* use posix_fadvise64(.., POSIX_FADV_SEQUENTIAL) to improve performance with mmap

* update quantize and lora

* update session copy/set to use ggml-backend

ggml-ci

* use posix_fadvise instead of posix_fadvise64

* ggml_backend_alloc_ctx_tensors_from_buft : remove old print

* llama_mmap::align_offset : use pointers instead of references for out parameters

* restore progress_callback behavior

* move final progress_callback call to load_all_data

* cuda : fix fprintf format string (minor)

* do not offload scales

* llama_mmap : avoid unmapping the same fragments again in the destructor

* remove unnecessary unmap

* metal : add default log function that prints to stderr, cleanup code

ggml-ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-21 21:07:46 +01:00
Eric Sommerlade
328b83de23
ggml : fixed check for _MSC_VER (#4535)
Co-authored-by: Eric Sommerlade <ersomme@microsoft.com>
2023-12-19 18:17:01 +02:00
Ebey Abraham
b9e74f9bca
llama : add phi-2 + fix NeoX rope + ggml_mul_mat_set_prec (#4490)
* phi2 implementation

* fix breaking change

* phi-2 : various fixes

* phi-2 : use layer norm eps

* py : whitespaces

* llama : fix meta KV override bug

* convert : phi don't add BOS token

* convert : revert "added_tokens_decoder" change

* phi-2 : scale Q instead of KQ for better precision

* ggml : fix NeoX rope to rotate just first n_dims

* cuda : less diff in the rope_neox kernel

* ggml : add ggml_mul_mat_set_prec

ggml-ci

* Update ggml-cuda.cu

Co-authored-by: slaren <slarengh@gmail.com>

* Update ggml-cuda.cu

Co-authored-by: slaren <slarengh@gmail.com>

* cuda : ggml_cuda_op_mul_mat_cublas support F32 precision

* cuda : remove oboslete comment

---------

Co-authored-by: Ebey Abraham <ebeyabraham@microsoft.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2023-12-18 19:27:47 +02:00
slaren
6744dbe924
ggml : use ggml_row_size where possible (#4472)
* ggml : use ggml_row_size where possible

ggml-ci

* ggml : move ggml_nbytes_split to ggml-cuda.cu
2023-12-14 20:05:21 +01:00
slaren
cafcd4f895
ggml : remove n_dims from ggml_tensor (#4469)
ggml-ci
2023-12-14 16:52:08 +01:00
LostRuins
20a68a7030
ggml : add ggml_row_size() (fixes llama out of space) (#4461)
* Fixes "Not enough space in the context's memory pool" encountered on certain models, which seems to be caused by some imprecision related to the automatic casting of floating point values

* do not cast to size_t, instead just use doubles

* ggml : add ggml_row_size(), deprecate ggml_type_sizef()

* ggml : fix row size compute to avoid overflows

* tests : fix sizey -> sizez

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-14 14:13:33 +02:00
Georgi Gerganov
4d98d9a656
sync : ggml (SD ops, tests, kernels) (#4444)
* sync : ggml (SD ops, tests, kernels)

ggml-ci

* cuda : restore im2col

ggml-ci

* metal : fix accuracy of dequantization kernels

ggml-ci

* cuda : restore correct im2col

ggml-ci

* metal : try to fix moe test by reducing expert size

ggml-ci

* cuda : fix bin bcast when src1 and dst have different types

ggml-ci

---------

Co-authored-by: slaren <slarengh@gmail.com>
2023-12-13 21:54:54 +02:00
slaren
799a1cb13b
llama : add Mixtral support (#4406)
* convert : support Mixtral as LLAMA arch

* convert : fix n_ff typo

* llama : model loading

* ggml : sync latest ggml_mul_mat_id

* llama : update graph to support MoE

* llama : fix cur -> cur_expert

* llama : first working version

* llama : fix expert weighting in the FFN

* ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only)

* ggml : add n_as argument to ggml_mul_mat_id

* ggml : fix ggml_get_rows to take into account ne02 / ne11

* metal : add more general support for ggml_get_rows + tests

* llama : add basic support for offloading moe with CUDA

* metal : add/mul/div use general kernel when src1 not cont

* metal : reduce the kernel launches for ggml_mul_mat_id

* ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D

* ggml : update get_rows f16 and q

* cuda : support non-contiguous src1 in get_rows

* llama : offload missing ffn_moe_silu

* metal : fix ggml_get_rows to work with non-cont src1

* metal : add indirect mat-vec kernels for all quantization types

* llama : do not quantize expert gating tensors

* llama : add n_expert and n_expert_used to hparams + change quants

* test-backend-ops : add moe test

* cuda : fix get_rows when ncols is odd

* convert : determine n_ctx correctly

* metal : fix ggml_mul_mat_id for F32

* test-backend-ops : make experts more evenly probable (test_moe)

* test-backend-ops : cleanup, add moe test for batches

* test-backend-ops : add cpy from f32 -> all types test

* test-backend-ops : fix dequantize block offset

* llama : fix hard-coded number of experts

* test-backend-ops : simplify and disable slow tests to avoid CI timeout

* test-backend-ops : disable MOE test with thread sanitizer

* cuda : fix mul_mat_id with multi gpu

* convert : use 1e6 rope_freq_base for mixtral

* convert : fix style

* convert : support safetensors format

* gguf-py : bump version

* metal : add cpy f16 -> f32 kernel

* metal : fix binary ops for ne10 % 4 != 0

* test-backend-ops : add one more sum_rows test

* ggml : do not use BLAS with ggml_mul_mat_id

* convert-hf : support for mixtral-instruct (#4428)

* convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct

* convert : use sentencepiece tokenizer for Mixtral-instruct

* convert : make flake8 happy

* metal : fix soft_max kernels

ref: 1914017863

* metal : limit kernels to not use more than the allowed threads

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Radek Pilar <github@mrkva.eu>
2023-12-13 14:04:25 +02:00
Taikono-Himazin
41a11aaf99
ggml : increased GGML_MAX_PARAMS to allow finetuning of 70b models (#4424) 2023-12-12 11:24:32 +02:00
Georgi Gerganov
fe680e3d10
sync : ggml (new ops, tests, backend, etc.) (#4359)
* sync : ggml (part 1)

* sync : ggml (part 2, CUDA)

* sync : ggml (part 3, Metal)

* ggml : build fixes

ggml-ci

* cuda : restore lost changes

* cuda : restore lost changes (StableLM rope)

* cmake : enable separable compilation for CUDA

ggml-ci

* ggml-cuda : remove device side dequantize

* Revert "cmake : enable separable compilation for CUDA"

This reverts commit 09e35d04b1.

* cuda : remove assert for rope

* tests : add test-backend-ops

* ggml : fix bug in ggml_concat

* ggml : restore `ggml_get_n_tasks()` logic in `ggml_graph_plan()`

* ci : try to fix macOS

* ggml-backend : remove backend self-registration

* ci : disable Metal for macOS cmake build

ggml-ci

* metal : fix "supports family" call

* metal : fix assert

* metal : print resource path

ggml-ci

---------

Co-authored-by: slaren <slarengh@gmail.com>
2023-12-07 22:26:54 +02:00
Georgi Gerganov
ef47ec18da
ggml : add ggml_soft_max_ext (#4256)
* metal : implement soft_max_ext

* cuda : implement soft_max_ext

* ggml : implement soft_max_ext (CPU)

* batched-bench : print threads

ggml-ci

* metal : simplify soft_max encoding

ggml-ci

* cuda : use 512 threads for soft_max instead of 32

* ggml : update soft max cpu

* cuda : do warp-based block reduce

* cuda : increase max block size to 1024

* cuda : fix warp reduction initialization of shared mem

* metal : warp-based reduction for soft max kernel

* metal : warp-based reduce for rms_norm

* metal : simplify soft max kernel

ggml-ci

* alloc : fix build with debug
2023-12-01 10:51:24 +02:00
Jared Van Bortel
64e64aa255
ggml : restore abort() in GGML_ASSERT (#4242) 2023-11-28 11:51:11 +02:00
slaren
e85bb1a8e7
llama : add functions to get the model's metadata (#4013)
* llama : add functions to get the model's metadata

* format -> std::to_string

* better documentation
2023-11-17 17:17:37 +02:00
Georgi Gerganov
3d68f364f1
ggml : sync (im2col, GPU conv, 32-bit arm compat) (#4060)
ggml-ci
2023-11-13 16:55:52 +02:00
Georgi Gerganov
4760e7cc0b
sync : ggml (backend v2) (#3912)
* sync : ggml (backend v2) (wip)

* sync : migrate examples and llama.cpp to dynamic graphs (wip)

* sync : update tests + fix max op params to 64

ggml-ci

* sync : ggml-cuda

ggml-ci

* llama : fix save/load state context size

ggml-ci

* sync : try to fix build on tvOS

* sync : pass custom graph sizes in training examples

* sync : update graph copies to new ggml API

* sync : update sync-ggml.sh with new files

* scripts : fix header in sync script

* train : fix context size calculations

* llama : increase inference graph size up to 4096 nodes

* train : allocate grads for backward graphs

* train : allocate grads for gb_tmp
2023-11-13 14:16:23 +02:00
xaedes
e9c1cecb9d
ggml : fix backward rope after YaRN (#3974)
* fix backward process of rope

rope backward process was broken after YaRN RoPE (#2268) implementation, due to missing changes in backward functions.

the code for the backward process is nearly identically to the forward process:
the only difference is the sign of the sin-values.

to avoid future regressions remove the near-duplicate backward functions and reuse the forward code:

for this a new function argument `bool forward` was added to `ggml_compute_forward_rope_f32` and `ggml_compute_forward_rope_f16`.
the sin-values will be negated when forward is false.

* fix finetune rope call to use correct default attn_factor of 1.0f

* remove unused `ggml_rope_xpos_back`

it is better to have only one `ggml_rope_back` function that accepts all rope parameters, so that `ggml_compute_backward` can propagate all parameters without having to switch between different rope_back variants.

* fix comments explaining the sinus sign in ggml_forward_rope

* add missing function arguments in declaration

* fix function argument type in declaration
2023-11-07 10:04:51 +02:00
cebtenzzre
898aeca90a
llama : implement YaRN RoPE scaling (#2268)
Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
Co-authored-by: Jeffrey Quesnelle <jquesnelle@gmail.com>
2023-11-01 18:04:33 -04:00
Georgi Gerganov
71e3718abd
llama : refactor graph build code (#3837)
* llama : factor out ggml-alloc from graph graph build functions

ggml-ci

* metal : disable kernel load log

* llama : factor out tensor offloading outside the build call (wip)

ggml-ci

* llama : offload rest of the models

ggml-ci

* llama : update offload log messages to print node index

* llama : comments

* llama : support offloading result_norm + comments

* llama : factor graph input into a function

* llama : do tensor offload only with CUDA

* llama : fix res_norm offloading

* llama : try to optimize offloading code

* llama : fix non-CUDA build

* llama : try to fix build

* llama : move refact in correct place + optimize graph input

* llama : refactor tensor offloading as callback

* llama : add layer index to all tensor names

* llama : add functional header

* llama : comment

ggml-ci

* llama : remove obsolete map for layer counting

* llama : add llm_build helper functions (#3848)

* llama : add llm_build_norm helper function

ggml-ci

* llama : add llm_build_ffn helper function (#3849)

ggml-ci

* llama : add llm_build_k_shift helper

ggml-ci

* llama : fix offloading after recent changes

* llama : add llm_build_kv_store helper

ggml-ci

* llama : remove obsolete offload names

* llama : fix llm_build_k_shift to use n_head_kv instead of n_head

* llama : simplify falcon Q, K, V computation

* llama : remove obsolete comments in build graphs

* llama : add llm_build_kqv helper

ggml-ci

* llama : minor

* llama : add LLAMA_OFFLOAD_DEBUG + fix starcoder offloading

* llama : fix input allocation logic

* llama : update offload functions for KQ tensors

* llama : normalize tensor names

ggml-ci

* llama : enable warning about not offloaded tensors

* llama : remove extra ; + deduplicate gate_b logic

* llama : add llm_build_inp_embd helper
2023-11-01 08:04:02 +02:00
Georgi Gerganov
d69d777c02
ggml : quantization refactoring (#3833)
* ggml : factor all quantization code in ggml-quants

ggml-ci

* ggml-quants : fix Zig and Swift builds + quantize tool

ggml-ci

* quantize : --pure option for disabling k-quant mixtures

---------

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
2023-10-29 18:32:28 +02:00
Georgi Gerganov
b2f7e04bd3
sync : ggml (conv ops + cuda MSVC fixes) (#3765)
ggml-ci
2023-10-24 21:51:20 +03:00
Qin Yue Chen
8cf19d60dc
gguf : support big endian platform (#3552)
* check whether platform is 390x if yes->do not import immintrin.h

* support s390x big endian

* support --bigendian option for s390x
1. verified with baichuan7b-chat with float 16 on s390x
2. verified with baichuan7b-chat
3. verified with chinese-alpaca-2-13b-f16

* update format based on editor-config checker result

* Update convert-baichuan-hf-to-gguf.py

* 1. check in ggml.c if endianess is not match
2. update GGUF version
3. change get_pack_prefix to property
4. update information log

* always use "GGUF" as beginng of GGUF file

* Compare "GGUF" with file header char by char
1.  Set GGUF_MAGIC to "GGUF" string instead of int value
2. Compare "GGUF" char by char to ensure its byte order
3. Move bytes swap code from convert.py to gguf.py write_tensor_data

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-10-20 14:19:40 +03:00
slaren
424b6381c4
ggml : add context enumeration functions (#3605)
finetune : fix assert failure in ggml-alloc
2023-10-13 12:23:10 +02:00
Georgi Gerganov
db3abcc114
sync : ggml (ggml-backend) (#3548)
* sync : ggml (ggml-backend)

ggml-ci

* zig : add ggml-backend to the build
2023-10-08 20:19:14 +03:00
Georgi Gerganov
f93af02488
sync : ggml (conv 1d + 2d updates, UB fixes) (#3468)
* sync : ggml (conv 1d + 2d updates)

ggml-ci

* ggml : fix UB in q5_0 and q5_1 quantize code

ggml.c:1033:39: runtime error: left shift of 1 by 31 places cannot be represented in type 'int'
SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior

ggml.c:1081:39: runtime error: left shift of 1 by 31 places cannot be represented in type 'int'
SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior

ggml-ci

* tests : fix UB in test-quantize-perf
2023-10-04 15:29:58 +03:00
Cebtenzzre
bc39553c90
build : enable more non-default compiler warnings (#3200) 2023-09-28 17:41:44 -04:00
Hua Jiang
0ccfc62a96
ggml_tensor: update the structure comments. (#3283)
* ggml_tensor: update the structure comments.

* remove semicolon

Co-authored-by: slaren <slarengh@gmail.com>

* Update ggml.h

---------

Co-authored-by: Cebtenzzre <cebtenzzre@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2023-09-28 23:06:18 +03:00
xaedes
0e76a8992c
train : finetune LORA (#2632)
* fix track_max_mem in forward_batch_wo_cache_flash_attn_train

* remove unnecessary Adam(W) optimizer tensors.

reduces optimizer memory overhead from 7*modelsize to 2*modelsize.

additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t.

bumps training checkpoint file version, but old checkpoints can still be read.
new version with less tensors is saved.

* add gradient clipping to AdamW

* Fix reset of unused g->nodes and g->grads to NULL

* implement gradient checkpointing for training

reduces memory overhead from O(n_layer) to O(sqrt(n_layer))

as explained in readme of https://github.com/cybertronai/gradient-checkpointing

* remove unused compute buffer 3

* add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes

GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);

* change AdamW decay parameter to work like the torch AdamW decay parameter

It is now relative to Adam learning rate `alpha*sched`.
Before that it was relative to `sched` only.

`alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1]

* change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT

* change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW

btw: the default weight decay parameter for torch.optim.AdamW is 0.01

* bug fixes for cross entropy loss

ggml_cross_entropy_loss: sums where not correctly added in workload of each thread
ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues

guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16

cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup.
so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance.

* fix test-grad0 for cross_entropy_loss

the second argument to cross_entropy_loss must sum up to 1 for each row

* fix test-grad0 for soft_max

dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work
instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0)

* improve finite differences of test-grad0 by using double instead of float

* change cross_entropy_loss to output average over all rows

this helps keeping the loss and gradients in a sane range

* improve gradient checkpointing

sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal.
since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different:

```
  given: n, u, v
  objective: minimize(a*u+b*v) where a*b=n, a>0, b>0
  b=n/a
  minimize(a*u+v*n/a)
  diff(a*u+v*n/a, a) = u - (v*n/a)/a
  diff(a*u+v*n/a, a) == 0
  u - (v*n/a)/a == 0
  u == v*n/(a*a)
  u*a*a = v*n
  a*a = v*n/u
  a = sqrt(n*v/u)
```

this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage.

* disable gradient checkpointing debug output

* llama : fix rope usage in train-text-from-scratch after ChatGLM change

* add more training parameters:

--enable-restart N         Only for Adam optimizer. Enable restarts of cos-decay
--disable-restart N        Only for Adam optimizer. Disable restarts of cos-decay
--opt-past N               Number of optimization iterations to track for delta convergence test. Disabled when zero.
--opt-delta N              Maximum delta for delta convergence test. Disabled when <= zero.
--opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero.
--adam-epsf N              AdamW epsilon for convergence test. Disabled when <= zero.
--adam-min-alpha N         Adam minimum learning rate alpha, usually 0.1 * alpha

* replace memcpy with reshape operation so that the graph is not cut at the input

this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it

* remove unused function argument from get_example_targets_batch

* measure and print total training time

* add optimization callback to ggml_opt_resume_g

this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)).

can be used for dynamic learning schedule and setting input data for batches before each iteration

* use optimization callback in training

allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters

reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration

* add minimum number of tensor dimensions to apply weight decay (default 2)

this allows to not apply weight decay to bias parameters

* rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup

* fix increase of model.train_samples and model.train_tokens

now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations

* change sampling parameters for prediction after training to defaults of common.h

and clarify what is context for prediction and what are generated tokens

* tighten abs error bounds for cross_entropy_loss in test-grad0

* add conditional compilation of using F16 exp in flash attention

uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention

* tighten abs error bounds for flash_attn in test-grad0

* tighten abs error bounds for sqrt in test-grad0

* remove out-commented vectorized code of opt_adam

the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead

* ggml : update ggml_rms_norm_back with configurable eps

* llama training : fix ggml_rms_norm_back calls to pass configurable eps

* remove trailing whitespace

* add train function using automatic gradient checkpointing backward pass and allocator

* in train function replace add_inplace by regular add

because using add_inplace seems to result in different gradients

* don't use allocate hash_map on context

because the context has no_alloc=True when using memory allocator resulting in NULL data pointers

* correctly clone reshape and permute operations by also cloning tensor->nb values

* fix variable name and add missing type cast

* terminate recursive tensor cloning when reaching tensor without src tensors

* correctly clone view tensors by setting data pointers

without this the checkpointing would only work when being used together with memory allocator

* fix variable names

* swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn`

* add input tensors as checkpoints

so that recursive tensor cloning of gradient checkpointing terminates on input tensors

* fix variable name and add missing boolean negation

* make sure some tensors are not reallocated by inserting new temporary nodes depending on them:

output and parameter gradient tensors need to be available at the end of the graph execution

parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration

checkpoint tensors are allocated all together to reduce memory allocator fragmentation

afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs

* fix ASSERT to work with zero layers

* add training options whether to use allocator and/or unified training function

* integrate unified training function which may use memory allocator

the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing

* format name of cloned tensors with " (clone)" suffix

* set names for tensors in unified train function for easier debugging

* allocate graph on context using ggml_new_graph

* remove handwritten training functions

* remove unused training parameters "use_scratch" and "use_unified"

* remove trailing whitespace

* remove unused train params: mem_compute1_gb & mem_compute2_gb

mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions
mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented)

* remove unused forward_batch function

* add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly

* only use ggml_allocr_alloc when tensor has NULL data and is no view

* fix test when to create temporary backward graph

temporary backward graph is only necessary when using checkpointing

* fix memory "leak" in optimizers

each iteration a new cplan with new memory for work data was allocated.
now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data.

* reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator

with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory.

the computation results are the same

* add API functions to access llama model tensors

* add stub example for finetuning, based on train-text-from-scratch

* move and remove code

* add API functions to access remaining model parameters:

mult, head and rot

* first draft for LORA finetune training

* remove const model and layer arguments in API functions for accessing model tensors

* bug fixes to make finetune compile

automatic allocator does not work yet

* add debug prints for training memory improvements

* fix names of lora tensors

* avoid stack overflow resulting from big ggml_cgraph

replace stack allocation and ggml_build_forward by ggml_new_graph in combination with ggml_build_forward_expand

* replace llama API functions to get model tensors by one function to get model tensor by name

LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);

* remove unused call to not existing llama_get_layer_from_model

* implement ggml_compute_forward_out_prod_q_f32

* remove trailing whitespace

* add lora finetune support on quantized base model tensors

* add ggml_add_cast API function

this function works like ggml_add, but accepts a data type for the resulting tensor.
only supported for quantized src0 input.

* use ggml_add_cast in finetuning

lora-applied weights will now have data type F32, which improves gradients when finetuning quantized base models

* bug fix: actually use result type passed to ggml_add_cast

* make sure base model tensors data cannot be used in viewable operations

memory allocator would try to make lora application inplace on base model tensors.
since those are memory mapped this will result in memory access violations

* fix bug in ggml_out_prod which resulted in wrong n_dims of result tensors

* avoid keeping in memory ALL of the gradients

The problem here stems from ggml_graph_reset. This function is called in the optimization function, before each graph computation, to reset the gradients to zero. This required a unique memory slot for each gradient: allocating memory from a previosly freed memory location might lead to non-zero input gradients.

During ggml_compute_backward the gradients are build stepwise by adding or substracting new values, starting from a OP_NONE tensor which needs to contain zero-values. This requires the graph reset.

To avoid this I now remember in ggml_build_backward_expand the original OP_NONE gradient tensors in a hash table, which is passed to ggml_compute_backward. There instead of using add (or sub or similar) I test whether the existing gradient to be changed is a zero-valued-tensor by looking up its existence in the hash table. When it is such a zero-tensor it will not be modified, but replaced by the value to be added, otherwise the regular add (not inplace, allocator will take care of this) will be used. This way none of those zero-tensor values will be necessary in the final backward graph and more importantly they won't need a unique memory slot, just to make them zero.

* remove trailing whitespace

* remove debug prints and function to compute tensor data hash

* improve optimization iteration prints

* adjust maximal values to support finetuning 3B models

* change default finetune params lora_r and lora_alpha to match the n_rank parameters of 4

* bug fix: make sure finetune input gradient is allocated at begin and kept until end

* remove unnecessary src tensor from ggml_get_rows_back

we don't need data of src[2] for computation, only to setup the correct output shape.
remove dependency on src[2], so that allocator can work more freely.

the computational graph is still completely determined, because the output shape is naturally included.
this is similar to how ggml_reshape does it.

* remove unnecessary src tensor from ggml_repeat & ggml_repeat_back

we don't need data of src[1] for computation, only to setup the correct output shape.
remove dependency on src[1], so that allocator can work more freely.

the computational graph is still completely determined, because the output shape is naturally included

* resolve todo

allocator will only make it inplace when they are of the same type

* mixing multiple LORA adapters is now possible

pass more than one '--lora FNAME' argument to apply more than one LORA.
use '--lora-scaled FNAME S' when you want to specify a user-defined scale for an adapter.

* add option to save finetune output every N iterations

* also save latest finetune output with ITERATION="LATEST" and print where files are saved

saving with LATEST makes it easier to resume training from the latest checkpoint
the string "LATEST" can be configured with command line option "--fn-latest STR"

* update checkpoint train stats before saving via "--save-every"

* add command line option `--rank-wo N` for rank of wo tensor

* update finetune README

* fix dump_non_result_info_yaml to output multiple lora adapters

* bug fix: replace GGML_TYPE_SIZE[t] by ggml_type_size(t)

* replace llama_n_mult by llama_n_ff

* finetune bug fixes to compile with merged in code from master

* remove prediction related code to reduce duplicated code with main

use main instead

* reduce large memory overhead in train-text-from-scratch

all gradients had to be pinned so that graph_reset works correctly.
this is no longer necessary with the changes to ggml_compute_backward introduced in this PR.

* add comment explaining why finetune checkpoints are allocated in one block

* make default value of float member a float literal

* handle rms_norm and rope parameters the same as in train-text-from-scratch

* remove unused code

* remove vocab related code as it is unnecessary

* add LLM_KV_TRAINING_TYPE to train-text-from-scratch checkpoints

so that they can be differentiated from lora finetune checkpoints

* add gguf constants and load/save functions from train-text-from-scratch

* add load & save lora finetune checkpoints via gguf

* add python script to convert old finetune checkpoint files to gguf

* remove old checkpoint save & load code

* remove code to print data checksums which was used to verify correctness of new gguf code

* omit tokenization when training is disabled, only save llama lora adapter

training can be disabled by passing '-n 0' to finetune

* remove trailing whitespace

* update README.md

* implement ggml_compute_forward_repeat_f16

* avoid stack overflow of large cgraphs in test-grad0

* add ggml API functions ggml_unravel_index, ggml_get_i32_nd and its analogs for set and for f32

ggml_get_i32_1d, ggml_set_i32_1d, ggml_get_f32_1d, ggml_set_f32_1d now support non-contiguous tensors.
in case of non-contiguous tensor, the 1d index is unraveled into a multi index using ggml_unravel_index to be passed to '_nd' function equivalent.

this fixes a bug in test-grad0 which happens due to ggml_build_backward not building purely contiguous tensors anymore

* increase test-grad0 context mem size to accommodate for bigger cgraph

* add sanity check to ggml_compute_backward, asserting the correct shape of gradients

* fix ggml_acc_or_set to return tensor of correct shape

* remove unused 'inplace' argument from ggml_compute_backward function

inplace operations to add gradients are no longer created by ggml_compute_backward
use allocator to automatically make inplace operations

* add missing argument 'int i0' to ggml_get_i32_nd & ggml_set_i32_nd header declarations

* fix error message in ggml_allocr_alloc to display actual max_avail

* fix check_gradient

ggml_build_backward_expand was previously replaced by ggml_build_backward, but the assignment of forward graph to backward graph missing

* use tensor->view_src instead of ggml_is_view and get_view_source

* move gradient checkpointing code into ggml, new API function:

// build gradient checkpointing backward graph gb for gf using provided checkpoints
// gb_tmp will contain original backward graph with rewritten backward process nodes,
// but without the second forward pass nodes.
GGML_API void ggml_build_backward_gradient_checkpointing(
        struct ggml_context   * ctx,
        struct ggml_cgraph    * gf,
        struct ggml_cgraph    * gb,
        struct ggml_cgraph    * gb_tmp,
        struct ggml_tensor  * * checkpoints,
        int                     n_checkpoints);

* replace custom data getters and setters by ggml functions

* train-text-from-scratch can train (full finetune) gguf models

just pass the gguf model via `--checkpoint-in FN`.
after this, to continue training, pass the generated checkpoint instead of the original gguf model.

tested with smaller models, bigger models may exceed available memory.
use (LORA) finetune for those.

* remove trailing whitespace

* add option to save train-text-from-scratch output every N iterations

* update README.md

* fix warnings

* fix warnings

* remove finetune option to disable allocator

the allocator should always be used.
by making sure that it is always used it gets easier to implement automatic memory requirements computation

* add tensor checkpoints only when gradient checkpointing is enabled

* initialize opt ggml context if none was provided

* add ggml-alloc API function 'ggml_allocr_max_size' to get max size of alloc

GGML_API size_t ggml_allocr_max_size(struct ggml_allocr * alloc);

* finetune: automatically allocate all memory and changes to command line options

remove '--n_examples N' parameter, as it no longer makes sense to call optimization process multiple times in a loop.
add '--only_write_lora' command line option: will skip tokenization and training, to only write a llama.cpp comptabile LORA adapter.
remove memory buffer related command line options.
improve iteration console output.

* add finetune to Makefile

* update README.md

* print time per iteration and estimate remaining time

* increase measured alloc size by tensor_alignment

ggml_allocr_reset will reduce the given size by up to tensor_alignment-1

* fix README.md

* add some more allocator debug prints

* bug fix, probably solves the 'ggml_allocr_alloc: not enough space in the buffer' issue

* revert last commit

"bug fix, probably solves the 'ggml_allocr_alloc: not enough space in the buffer' issue"

"alloc was freeing an externally allocated tensor, because it calculated the end of allocator memory as alloc->data + alloc->max_size instead of alloc->data + alloc->size."

This is intentional to reduce the risk of freeing external tensors when measuring. Unless max_size is not properly calculated, I don't see why this is an issue.

* remove unnecessary "0x" before "%p" output

* move measurement memory segment to upper region of the address space

* update README.md

* fix printf format warnings

* add missing gguf_free in load_checkpoint_lora_file

* load default rms_norm and rope parameters from base model

* add gradient accumulation

specify number accumulation steps with '--grad-acc N'.
this will simulate a bigger batch size of grad_acc*batch.

* fix tracking of train_samples and train_tokens

* build : fix compile warnings

* ggml : fix L-BFGS linesearch loop

* improve finetune time measurement

fix printf warnings on system where int64_t is (long int).
change time datatypes to double because values get big with long training times.
exclude file saving from time measurement.
converge faster to actual time per iteration by removing very small first duration before first iteration was performed.
fix bug in output of total training time, the reported value was 1000 times to small.

* specify default lora rank with '--lora-r N'

'--lora-r N' will specify default rank for all tensors
'--rank-wq N', etc. will override this default rank for specific tensor types.

* fix gradient accumulation bug where the same batch was used for each microstep

* fix gradient accumulation bug where the same batch was used for each microstep

* support grouped-query-attention in ggml_flash_attn and ggml_flash_attn_back

k and v can now be repeated in q along ne[2]

in forward pass just use modulo to compute k and v indices, like ik2 = iq2 % nek2.

in backard pass this won't work as easy, because multiple threads will compete to accumulate to the same k->grad[:,ik1,ik2,ik3] and v->grad[:,iv1,iv2,iv3].
so we change the parallelization over q rows to be over k rows. this ensures non-overlapping (ik2,ik3) across threads.
in each thread we then iterate over the number of repetitions of k/v in q to compute iq2 as iq2 = ik2 + irep*nek2.

since ne2 is not the same for q,k and v we also change how the gradients are concatenated into the result tensor.
additionally the offsets of gradq, gradk and gradv in the result tensor are now memory aligned.

we also simplify the compute_backward part of flash_attn to use ggml_reshape instead of switching over the number of dimensions.
this needs a small change to ggml_reshape, removing the assertion of second argument to be contiguous.
since only the shape (ne) of the second reshape argument is of relevance, its memory layout (nb) is irrelevant -> it can very well be non-contiguous.

change test-grad0 to also test for repeated k/v in q.

this changes the rng and now results in small gradient differences in softmax. these solely come from using f16 exp table lookup in forward softmax: when temporarily changing softmax to use actual exp function, the reported gradient differences go away. gradient differences coming solely from f16 table lookup are acceptable.
added a note to explain this.

* add llama API functions to get grouped-query-attention n_head parameter 'n_head_kv'.

* fix finetune to support grouped-query-attention (using flash-attention)

note: ggml changes to ggml_out_prod are necessary to support grouped-query-attention without flash-attention.

* support broadcastable a in out_prod(a, b) and backward pass of broadcasting mul_mat(a, b)

* test broadcasting mul_mat backward pass

* decouple random number generator of each operation test

when changing one test the rng of others tests is not influenced anymore

* add comment briefly describing what ggml_repeat_back does

* simplify broadcasting mul_mat backward using ggml_repeat_back

* add cgraph evaluation order member and corresponding enum type

this controls in which order ggml_build_forward visits source nodes.
by default the nodes are visited left to right, i.e. src[0] first.
in some cases it is beneficial for ggml-alloc to visit in a different order.
two possible orders are supported: left-to-right (src[0] first) and right-to-left (src[0] last).

* measure max compute size for each cgraph eval order and use best order

this can bring huge memory savings:
e.g. codellama-34b with n_ctx=64, n_batch=1 goes from 92927.8mb down to 4627.6 MB

* remove unused command line options

* add sample start patterns and options to force new or by default resume last shuffling

* update shuffle rng state on reshuffle

* exclude known zero values from computations in flash_attn_f32 & flash_attn_back_f32

* remove probably unnecessary exception type flags from stringstream

* pass correct max number of tokens to llama_tokenize

* account for possible leading whitespace that will be added by tokenizer
e.g. '\t' will be tokenized by llama spm tokenizer to [29871, 12]

* use unrolled vec_mad in out_prod

y is vec_mad result vec.
x is vec_mad input vec.
v is vec_mad input scalar.

ggml_vec_mad_f32_unroll will internally loop over x and v with same y.

GGML_VEC_MAD_UNROLL is by default defined to 32.

This value is empirical optimized using performance test runs of out-prod in openllama-3b finetune with 256 context length and batch size 1. It gives 23% performance boost for out_prod.

Full measurements of out-prod runtime in ms:
	unroll_xv	unroll_yv
1	67014.643	87826.469
2	77117.552	89077.656
4	72091.311	109121.657
8	61077.543	88678.334
16	56914.67	79514.947
24	59024.595	84350.254
28	55952.446	83368.73
32	51476.658	85177.745
36	55973.792	84659.92
40	55139.616	93844.738
48	60736.392	93330.267
64	99856.878	116994.99

Second column is when unrollying yv instead of xv

* set lora_alpha to value of lora_r if it is not set via command line

otherwise only changing lora_r will change scaling of lora adapter used in prediction

* reshuffle original sample order instead of the previous shuffled order

otherwise resumed reshuffle will not result in same sample order

* block tiling for out-prod inspired by mul-mat

block sizes are empirically optimized

roughly doubles the flops of out-prod

* exclude some more known zero values from computations in flash_attn_f32 & flash_attn_back_f32

* add static keywords

* remove outcommented old code

* update train-text-from-scratch with tokenization, sample selection and shuffling from finetune

* remove lbfgs related train parameters

* move common train functions into common/train.[h|cpp]

* move train state into struct train_state

* move train data saving code into callback to unify code of opt_callback

train_params are still different in finetune and train-text-from-scratch, so it can't yet be moved to train.h|cpp

* move common train params into common/train

* move common opt_callback into common/train

* fix consume_common_train_arg

* save and load head_count_kv in lora checkpoints

* increase train_samples by used_samples instead of number of batches

on batch can contain more than one sample when option "fill_with_next_samples" is used

* fix usage of llama_tokenize

* remove static from process_escape since we need it exposed in header

* fix code formating of long function declarations

* fix condition in load_train_state_gguf

* use die("msg") instead of replace GGML_ASSERT(!"msg") or throw std::runtime_error("msg")

* fix saving and loading of training type

* remove terminating '\0' from tokenization

(llama_tokenize is now passed the string length instead of relying on terminating '\0')

* fix compile warnings

* fix compile warnings

* use new/delete for train_state instead of malloc/free

using malloc may result in seg faults when trying to assign string fields

* assert that sample_count > 0, avoiding division by zero

* fix frand to return value in interval [0,1)

* add train option "--sample-random-offsets"

Use samples beginning at random offsets.
The offset is only applied to the first sample in each batch context window.
Together with "--fill-with-next-samples" this may help for training endless text generation.

For example given a dataset containing samples "abcd", "ABCD", "0123".
With context size of 8 and options "--fill-with-next-samples", "--no-separate-with-eos", "--no-separate-with-bos",
the context windows of batches could only be filled with "abcdABCD", "ABCDabcd", "0123abcd", etc.

With "--sample-random-offsets" it can also be filled with "23abcdAB", "bcd0123A", etc.

* deduplicate code into function

* remove n_rot hparam, as it must always be hparam.n_embd_head()

* align code

* assert correct base model tensor shapes

* move some params from lora hparams into model hparams and load model params from gguf

this equalizes the model definition in finetune and text-from-scratch and removes the need for additional llama api functions to get model parameters

* remove now unnecessary llama API functions to get model params that where added by this PR

* train-text-from-scratch: automatically allocate model tensors, remove option '--mem-model N'

* train-text-from-scratch: automatically allocate opt context

* train-text-from-scratch: automatically allocate input tensors

* train-text-from-scratch: automatically allocate compute memory

* remove unused options and equalize train-text-from-scratch with finetune

* initialize opt->loss_after with zero

* add export-lora program

* remove trailing whitespace

* add export-lora build in Makefile

* remove unused struct tensor_info from export-lora

* add export-lora build dependency to llama

because it depends on common, which depends on llama

* update finetune README.md

* cancel optimization when specified number of epochs is completed

* improve handling of export-lora arguments

print errors and warnings when files could not be read or created

* Fix export-lora.cpp "not enough space in the context's memory pool" (#1)

* Fix export-lora.cpp "not enough space in the context's memory pool"

Without this patch, export-lora would sometimes error with "not enough space in the context's memory pool (needed 656784, available 656800)".

* increase required context size by 5*GGML_MEM_ALIGN instead of plain 16

---------

Co-authored-by: xaedes <xaedes@gmail.com>

* improve handling of not yet supported tensor types

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: meatbag-18a <145869052+meatbag-18a@users.noreply.github.com>
2023-09-28 21:40:11 +03:00
Cebtenzzre
2db94d98ed
gguf : basic type checking in gguf_get_* (#3346) 2023-09-28 14:30:31 -04:00
Georgi Gerganov
ec893798b7
llama : custom attention mask + parallel decoding + no context swaps (#3228)
* tests : verify that RoPE is "additive"

* llama : replace ggml_diag_mask_inf with ggml_add (custom -inf mask)

* ggml : ggml_rope now takes a vector with positions instead of n_past

* metal : add rope_f16 kernel + optimize cpy kernels

* llama : unified KV cache + batch inference API

* llama : add new llama_decode() API that works with llama_batch

* llama : add cell_max heuristic for more efficient kv_cache

* llama : extend llama_kv_cache API

* llama : more robust cell_max heuristic + wip shift

* metal : disable concurrency optimization

* llama : add llama_kv_cache_shift_seq + no more context swaps

* llama : apply K-cache roping for Falcon and Baichuan

* speculative : fix KV cache management

* parallel : example for serving multiple users in parallel

* parallel : disable hot-plug to avoid cache fragmentation

* fixes : speculative KV cache + llama worst-case graph

* llama : extend batch API to select which logits to output

* llama : fix worst case graph build

* ggml-cuda : update rope implementation for parallel decoding (#3254)

* ggml-cuda : update rope implementation for parallel decoding

* better solution for p0 computation

* fix rope

* simpler rope implementation

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* make : add parallel to build + fix static functions in llama.cpp

* simple : fix token counting

* parallel : various improvements

* llama : fix cell_max logic + rename functions

* parallel : try smaller batches when the KV cache is fragmented

* parallel : fix sequence termination criteria

* llama : silence errors KV cache errors

* parallel : remove new line from prompt

* parallel : process system prompt once + configurable paramters + llama API

* parallel : remove question with short answers

* parallel : count cache misses

* parallel : print misses on each request

* parallel : minor

* llama : fix n_kv to never become 0

* parallel : rename hot-plug to continuous-batching

* llama : improve llama_batch API + simplify parallel example

* simple : add parallel decoding support

* simple : improve comments + free batch

* ggml-cuda : add rope f16, restore performance with parallel decoding (#3272)

* ggml-cuda : add rope f16, restore performance

* offload KQ_mask with all models

* fix rope shift

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama : disable MPI for now

ggml-ci

* train : make KQ_pos memory buffer permanent via dummy scale op

* ggml : revert change to ggml_cpy, add ggml_cont_Nd instead (#3275)

ggml-ci

* parallel : fix bug (extra BOS) + smaller token_prev array

* parallel : fix cases where the input prompts can overflow the batch

* parallel : add disabled experimental batch chunking in powers of two

* llama : llama.h formatting + comments

* simple : add README.md

* llama : fix kv cache heuristic when context is less than 32

* parallel : fix crash when `-n -1`

* llama : simplify returns if/else branches

* metal : use mm kernels for batch size > 2

* examples : utilize new llama_get_logits_ith()

* examples : add example for batched decoding

* examples : do not eval prompt 2 times (close #3348)

* server : clear the KV cache beyond n_past before llama_decode

* server : avoid context swaps by shifting the KV cache

---------

Co-authored-by: slaren <slarengh@gmail.com>
2023-09-28 19:04:36 +03:00
Rickard Hallerbäck
dc6897404e
metal : reusing llama.cpp logging (#3152)
* metal : reusing llama.cpp logging

* cmake : build fix

* metal : logging callback

* metal : logging va_args memory fix

* metal : minor cleanup

* metal : setting function like logging macro to capital letters

* llama.cpp : trailing whitespace fix

* ggml : log level enum used by llama

* Makefile : cleanup ggml-metal recipe

* ggml : ggml_log_callback typedef

* ggml : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-09-27 18:48:33 +03:00
Georgi Gerganov
8c00b7a6ff
sync : ggml (Metal F32 support + reduce ggml-alloc size) (#3192)
* sync : ggml (Metal F32 support + reduce ggml-alloc size)

ggml-ci

* llama-bench : fix ggml_cpu_has_metal() duplicate function

ggml-ci
2023-09-15 19:06:03 +03:00
Eric Sommerlade
b52b29ab9d
arm64 support for windows (#3007)
Co-authored-by: Cebtenzzre <cebtenzzre@gmail.com>
2023-09-12 21:54:20 -04:00
slaren
06abf8eeba
ggml : add view_src and view_offs to ggml_tensor for views (#2874)
* ggml : add view_src and view_offs

* update ggml-alloc to use view_src

* update ggml_diag_mask to work correctly with automatic inplace

* exclude other ops that set an inplace flag from automatic inplace
2023-08-29 23:24:42 +02:00
xaedes
44c117f41e
train : mem usage and other improvements (#2439)
* fix track_max_mem in forward_batch_wo_cache_flash_attn_train

* remove unnecessary Adam(W) optimizer tensors.

reduces optimizer memory overhead from 7*modelsize to 2*modelsize.

additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t.

bumps training checkpoint file version, but old checkpoints can still be read.
new version with less tensors is saved.

* add gradient clipping to AdamW

* Fix reset of unused g->nodes and g->grads to NULL

* implement gradient checkpointing for training

reduces memory overhead from O(n_layer) to O(sqrt(n_layer))

as explained in readme of https://github.com/cybertronai/gradient-checkpointing

* remove unused compute buffer 3

* add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes

GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);

* change AdamW decay parameter to work like the torch AdamW decay parameter

It is now relative to Adam learning rate `alpha*sched`.
Before that it was relative to `sched` only.

`alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1]

* change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT

* change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW

btw: the default weight decay parameter for torch.optim.AdamW is 0.01

* bug fixes for cross entropy loss

ggml_cross_entropy_loss: sums where not correctly added in workload of each thread
ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues

guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16

cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup.
so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance.

* fix test-grad0 for cross_entropy_loss

the second argument to cross_entropy_loss must sum up to 1 for each row

* fix test-grad0 for soft_max

dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work
instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0)

* improve finite differences of test-grad0 by using double instead of float

* change cross_entropy_loss to output average over all rows

this helps keeping the loss and gradients in a sane range

* improve gradient checkpointing

sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal.
since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different:

```
  given: n, u, v
  objective: minimize(a*u+b*v) where a*b=n, a>0, b>0
  b=n/a
  minimize(a*u+v*n/a)
  diff(a*u+v*n/a, a) = u - (v*n/a)/a
  diff(a*u+v*n/a, a) == 0
  u - (v*n/a)/a == 0
  u == v*n/(a*a)
  u*a*a = v*n
  a*a = v*n/u
  a = sqrt(n*v/u)
```

this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage.

* disable gradient checkpointing debug output

* llama : fix rope usage in train-text-from-scratch after ChatGLM change

* add more training parameters:

--enable-restart N         Only for Adam optimizer. Enable restarts of cos-decay
--disable-restart N        Only for Adam optimizer. Disable restarts of cos-decay
--opt-past N               Number of optimization iterations to track for delta convergence test. Disabled when zero.
--opt-delta N              Maximum delta for delta convergence test. Disabled when <= zero.
--opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero.
--adam-epsf N              AdamW epsilon for convergence test. Disabled when <= zero.
--adam-min-alpha N         Adam minimum learning rate alpha, usually 0.1 * alpha

* replace memcpy with reshape operation so that the graph is not cut at the input

this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it

* remove unused function argument from get_example_targets_batch

* measure and print total training time

* add optimization callback to ggml_opt_resume_g

this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)).

can be used for dynamic learning schedule and setting input data for batches before each iteration

* use optimization callback in training

allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters

reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration

* add minimum number of tensor dimensions to apply weight decay (default 2)

this allows to not apply weight decay to bias parameters

* rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup

* fix increase of model.train_samples and model.train_tokens

now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations

* change sampling parameters for prediction after training to defaults of common.h

and clarify what is context for prediction and what are generated tokens

* tighten abs error bounds for cross_entropy_loss in test-grad0

* add conditional compilation of using F16 exp in flash attention

uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention

* tighten abs error bounds for flash_attn in test-grad0

* tighten abs error bounds for sqrt in test-grad0

* remove out-commented vectorized code of opt_adam

the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead

* ggml : update ggml_rms_norm_back with configurable eps

* llama training : fix ggml_rms_norm_back calls to pass configurable eps

* remove trailing whitespace

* add train function using automatic gradient checkpointing backward pass and allocator

* in train function replace add_inplace by regular add

because using add_inplace seems to result in different gradients

* don't use allocate hash_map on context

because the context has no_alloc=True when using memory allocator resulting in NULL data pointers

* correctly clone reshape and permute operations by also cloning tensor->nb values

* fix variable name and add missing type cast

* terminate recursive tensor cloning when reaching tensor without src tensors

* correctly clone view tensors by setting data pointers

without this the checkpointing would only work when being used together with memory allocator

* fix variable names

* swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn`

* add input tensors as checkpoints

so that recursive tensor cloning of gradient checkpointing terminates on input tensors

* fix variable name and add missing boolean negation

* make sure some tensors are not reallocated by inserting new temporary nodes depending on them:

output and parameter gradient tensors need to be available at the end of the graph execution

parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration

checkpoint tensors are allocated all together to reduce memory allocator fragmentation

afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs

* fix ASSERT to work with zero layers

* add training options whether to use allocator and/or unified training function

* integrate unified training function which may use memory allocator

the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing

* format name of cloned tensors with " (clone)" suffix

* set names for tensors in unified train function for easier debugging

* allocate graph on context using ggml_new_graph

* remove handwritten training functions

* remove unused training parameters "use_scratch" and "use_unified"

* remove trailing whitespace

* remove unused train params: mem_compute1_gb & mem_compute2_gb

mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions
mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented)

* remove unused forward_batch function

* add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly

* only use ggml_allocr_alloc when tensor has NULL data and is no view

* fix test when to create temporary backward graph

temporary backward graph is only necessary when using checkpointing

* fix memory "leak" in optimizers

each iteration a new cplan with new memory for work data was allocated.
now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data.

* reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator

with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory.

the computation results are the same

* add missing lctx argument to get_example_targets_batch

* implement llama model file saving using gguf

checkpoint loading and saving disabled, to be replaced by loading and saving via gguf

* implement loading/saving of checkpointing files using GGUF

* bug fixes

* add checkpoint file version for future compatibility

* update readme with gguf filenames

* save & load opt->just_initialized value

* add first draft for checkpoint conversion script

* add gguf arch and ftype

* save opt parameter counter as uint64

* add gguf key and tensor names for optimizer and training

* add layer_norm_rms_eps to checkpoint convert script

* use same GGUF_GET_KEY macro as in llama.cpp

* use norm_rms_eps, and rope parameters and command line options to set them

* fix memory corruption bug in gguf

ctx->kv and ctx->infos was reallocated using not-aligned realloc, but freed with aligned free.
to fix this a GGML_ALIGNED_REALLOC was added, but there is no posix_memalign_realloc function.
so on non-windows and non-mingw32 platforms we fall back to aligned malloc, followed by copying
and freeing the old data.

* add gguf example cmake file

* bug fixes in tokenize_file

* bug fixes in load_llama_model_gguf

* bug fix: init model when no checkpoint was loaded

* bug fix in read_tensor_by_name

* bug fix in load_opt_context_gguf

* avoid printing lots of spaced on the unusual case that loss gets nan

* set name of tensors with empty name from what was read from gguf

* remove trailing whitespace

* print data checksums before saving and after loading to verify correctness

* bug fixes for convert-train-checkpoint-to-gguf

* temporarily add code to write old checkpoint files

used to verify that old checkpoint files are correctly converted to gguf

* bug fixes for convert-train-checkpoint-to-gguf.py loading checkpoints with opt_version=0

* remove code used to verify correctness of checkpoint file conversion

* remove trailing whitespace

* remove prediction related code

use main for prediction, it is better optimized

* update train-text-from-scratch README.md

* fix non-windows GGML_ALIGNED_REALLOC

* add missing blank line at end of file

* remove GGML_ALIGNED_REALLOC and use normal malloc/realloc/free for gguf ctx->kv & ctx->infos

* train : fix compile warnings

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-08-28 22:51:47 +03:00
Georgi Gerganov
35feac6560
ggml : sync (mem align to header + conv_transpose_2d fixes + ggml_alloc) (#2852)
* ggml : sync (mem align to header + conv_transpose_2d fixes)

ggml-ci

* ggml-alloc : minor fix

* ggml-alloc : sync more fixes
2023-08-28 14:24:53 +03:00
Georgi Gerganov
d0cee0d36d
gguf : add 64-bit support (GGUF v2) (#2821)
* gguf : bump version to 2

* gguf : add support for 64-bit (no backwards comp yet)

* gguf : v1 backwards comp

* gguf.py : bump GGUF version

* gguf.py : uint64_t on all lengths, sizes and counts, enums still uint32_t

* gguf.py : string lengths uint32_t

* gguf : update all counts to 64-bit

* gguf.py : string len uint64_t and n_dims uint32_t

* gguf : fix typo

* llama.cpp : print gguf version

---------

Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
2023-08-27 14:19:54 +03:00