* iq2_xxs: basics
* iq2_xxs: scalar and AVX2 dot products
Needed to change Q8_K to have quants in the -127...127 range,
else the IQ2_XXS AVX implementation becomes very awkward.
The alternative would have been to use Q8_0 instead. Perhaps
I'll change later, for now this is what we have.
* iq2_xxs: ARM_NEON dot product
Somehow strangely slow (112 ms/token).
* iq2_xxs: WIP Metal
Dequantize works, something is still wrong with the
dot product.
* iq2_xxs: Metal dot product now works
We have
PP-512 = 475 t/s
TG-128 = 47.3 t/s
Not the greatest performance, but not complete garbage either.
* iq2_xxs: slighty faster dot product
TG-128 is now 48.4 t/s
* iq2_xxs: slighty faster dot product
TG-128 is now 50.9 t/s
* iq2_xxs: even faster Metal dot product
TG-128 is now 54.1 t/s.
Strangely enough, putting the signs lookup table
into shared memory has a bigger impact than the
grid values being in shared memory.
* iq2_xxs: dequantize CUDA kernel - fix conflict with master
* iq2_xxs: quantized CUDA dot product (MMVQ)
We get TG-128 = 153.1 t/s
* iq2_xxs: slightly faster CUDA dot product
TG-128 is now at 155.1 t/s.
* iq2_xxs: add to llama ftype enum
* iq2_xxs: fix MoE on Metal
* Fix missing MMQ ops when on hipBLAS
I had put the ggml_supports_mmq call at the wrong place.
* Fix bug in qequantize_row_iq2_xxs
The 0.25f factor was missing.
Great detective work by @ggerganov!
* Fixing tests
* PR suggestion
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* ggml : disable fast-math for Metal (cmake build only)
ggml-ci
* metal : fix Metal API debug warnings
* cmake : add -fno-inline for Metal build (#4545)
* metal : fix API debug warnings
* metal : fix compile warnings
* metal : use uint64_t for strides
* cmake : rename option to LLAMA_METAL_SHADER_DEBUG
* metal : fix mat-vec Q8_0 kernel for BS > 1
* metal : normalize mat-vec kernel signatures
* cmake : respect LLAMA_QKK_64 option
* metal : fix mat-vec Q4_K kernel for QK_K == 64
* metal : optimizing ggml_mul_mat_id (wip)
* metal : minor fix
* metal : opt mul_mm_id
* ggml : disable fast-math for Metal (cmake build only)
ggml-ci
* metal : fix Metal API debug warnings
* cmake : add -fno-inline for Metal build (#4545)
* metal : fix API debug warnings
* metal : fix compile warnings
* metal : use uint64_t for strides
* cmake : rename option to LLAMA_METAL_SHADER_DEBUG
* metal : fix mat-vec Q8_0 kernel for BS > 1
* metal : normalize mat-vec kernel signatures
* cmake : respect LLAMA_QKK_64 option
* metal : fix mat-vec Q4_K kernel for QK_K == 64
ggml-ci
* llama : initial ggml-backend integration
* add ggml-metal
* cuda backend can be used though ggml-backend with LLAMA_GGML_BACKEND_CUDA_TEST
access all tensor data with ggml_backend_tensor_get/set
* add ggml_backend_buffer_clear
zero-init KV cache buffer
* add ggml_backend_buffer_is_hos, used to avoid copies if possible when accesing tensor data
* disable gpu backends with ngl 0
* more accurate mlock
* unmap offloaded part of the model
* use posix_fadvise64(.., POSIX_FADV_SEQUENTIAL) to improve performance with mmap
* update quantize and lora
* update session copy/set to use ggml-backend
ggml-ci
* use posix_fadvise instead of posix_fadvise64
* ggml_backend_alloc_ctx_tensors_from_buft : remove old print
* llama_mmap::align_offset : use pointers instead of references for out parameters
* restore progress_callback behavior
* move final progress_callback call to load_all_data
* cuda : fix fprintf format string (minor)
* do not offload scales
* llama_mmap : avoid unmapping the same fragments again in the destructor
* remove unnecessary unmap
* metal : add default log function that prints to stderr, cleanup code
ggml-ci
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* sync : ggml (SD ops, tests, kernels)
ggml-ci
* cuda : restore im2col
ggml-ci
* metal : fix accuracy of dequantization kernels
ggml-ci
* cuda : restore correct im2col
ggml-ci
* metal : try to fix moe test by reducing expert size
ggml-ci
* cuda : fix bin bcast when src1 and dst have different types
ggml-ci
---------
Co-authored-by: slaren <slarengh@gmail.com>
* convert : support Mixtral as LLAMA arch
* convert : fix n_ff typo
* llama : model loading
* ggml : sync latest ggml_mul_mat_id
* llama : update graph to support MoE
* llama : fix cur -> cur_expert
* llama : first working version
* llama : fix expert weighting in the FFN
* ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only)
* ggml : add n_as argument to ggml_mul_mat_id
* ggml : fix ggml_get_rows to take into account ne02 / ne11
* metal : add more general support for ggml_get_rows + tests
* llama : add basic support for offloading moe with CUDA
* metal : add/mul/div use general kernel when src1 not cont
* metal : reduce the kernel launches for ggml_mul_mat_id
* ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D
* ggml : update get_rows f16 and q
* cuda : support non-contiguous src1 in get_rows
* llama : offload missing ffn_moe_silu
* metal : fix ggml_get_rows to work with non-cont src1
* metal : add indirect mat-vec kernels for all quantization types
* llama : do not quantize expert gating tensors
* llama : add n_expert and n_expert_used to hparams + change quants
* test-backend-ops : add moe test
* cuda : fix get_rows when ncols is odd
* convert : determine n_ctx correctly
* metal : fix ggml_mul_mat_id for F32
* test-backend-ops : make experts more evenly probable (test_moe)
* test-backend-ops : cleanup, add moe test for batches
* test-backend-ops : add cpy from f32 -> all types test
* test-backend-ops : fix dequantize block offset
* llama : fix hard-coded number of experts
* test-backend-ops : simplify and disable slow tests to avoid CI timeout
* test-backend-ops : disable MOE test with thread sanitizer
* cuda : fix mul_mat_id with multi gpu
* convert : use 1e6 rope_freq_base for mixtral
* convert : fix style
* convert : support safetensors format
* gguf-py : bump version
* metal : add cpy f16 -> f32 kernel
* metal : fix binary ops for ne10 % 4 != 0
* test-backend-ops : add one more sum_rows test
* ggml : do not use BLAS with ggml_mul_mat_id
* convert-hf : support for mixtral-instruct (#4428)
* convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct
* convert : use sentencepiece tokenizer for Mixtral-instruct
* convert : make flake8 happy
* metal : fix soft_max kernels
ref: 1914017863
* metal : limit kernels to not use more than the allowed threads
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Radek Pilar <github@mrkva.eu>
* metal : implement soft_max_ext
* cuda : implement soft_max_ext
* ggml : implement soft_max_ext (CPU)
* batched-bench : print threads
ggml-ci
* metal : simplify soft_max encoding
ggml-ci
* cuda : use 512 threads for soft_max instead of 32
* ggml : update soft max cpu
* cuda : do warp-based block reduce
* cuda : increase max block size to 1024
* cuda : fix warp reduction initialization of shared mem
* metal : warp-based reduction for soft max kernel
* metal : warp-based reduce for rms_norm
* metal : simplify soft max kernel
ggml-ci
* alloc : fix build with debug
* llama : fix data units
ggml-ci
* Revert "llama : fix data units"
This reverts commit f5feac831fe225ed7f3db938d115732a49dccfc4.
* llama : disambiguate data units
ggml-ci
* Try cwd for ggml-metal if bundle lookup fails
When building with `-DBUILD_SHARED_LIBS=ON -DLLAMA_METAL=ON -DLLAMA_BUILD_SERVER=ON`,
`server` would fail to load `ggml-metal.metal` because `[bundle pathForResource:...]`
returns `nil`. In that case, fall back to `ggml-metal.metal` in the cwd instead of
passing `null` as a path.
Follows up on #1782
* Update ggml-metal.m
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* metal : implement dequantize_q5_0
* metal : block_q_n_dot_y for block_q5_0 (broken)
* metal : revert unnecessary change
* metal : implement dequantize_q5_1
* metal : block_q_n_dot_y for q5_1 (broken)
* metal : fix block_q_n_dot_y
* minor : spaces / formatting
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* CUDA: added support for ggml_clamp (see also: https://github.com/ggerganov/ggml/issues/545)
* mpt : added an implementation based (mostly) on falcon integration, modified with deltas from ggml/examples/mpt
* mpt : protect against "clip_qkv": null in mpt-7b
* mpt : quick fix to avoid "Strange model" warning when quantizing MPT models
* mpt : addendum to changeset:84e30e8 - leave parameter clamp_kqv out from metadata rather than use 0.0 to indicate "no clamping" (more compliant with the current GGUF spec?)
* mpt : standardized all tensor names to follow GGUF spec
* mpt : addendum to changeset:1be89c40 - use "req" parameter of GGUF_GET_KEY macro instead of duplicate code
* mpt : fixed comment s/gptneox/mpt/
* mpt : remove tabs, trailing whitespace
* mpt : removed ne01 + n_past == ne00 assertion from alibi (cuda/f32) and rope_shift from build_mpt
* mpt : updated convert-mpt-hf-to-gguf.py to reflect changes made to convert-gptneox-hf-to-gguf.py in pr:3252
* comment out n_past instead of marking it unused
* mpt : removed hardcoded +178 from convert script in favor of utilizing hparams["vocab_size"]
* mpt : remove unused tokenizer_json in convert script
* ggml : remove obsolete n_past assert in ggml_alibi
* llama : print clam_kqv and max_alibi_bias hparams
---------
Co-authored-by: Cebtenzzre <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* metal : improve decoding speed for batches of 2-16
* metal : rename kernels mul_mat_ to mul_mv_
* metal : indentations
* minor
* metal : print more GPU info + disable mul_mm for MTLGPUFamiliy < Apple7
* metal : relax conditions on fast matrix multiplication kernel
* metal : revert the concurrnecy change because it was wrong
* llama : remove experimental stuff
* Minor speed gains for all quantization types
* metal: faster kernel_scale via float4
* Various other speedups for "small" kernels
* metal: faster soft_max vial float4
* metal: faster diagonal infinity
Although, to me it looks like one should simply
fuse scale + diagnonal infinity + soft_max on the
KQtensor.
* Another faster f16 x f32 matrix multiply kernel
* Reverting the diag infinity change
It does work for PP, but somehow it fails for TG.
Need to look more into it.
* metal: add back faster diagonal infinity
This time more carefully
* metal : minor (readibility)
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Metal support for Swift
* update
* add a toggle for arm/arm64
* set minimum versions for all platforms
* update to use newLibraryWithURL
* bump version
Co-authored-by: Jhen-Jie Hong <iainst0409@gmail.com>
---------
Co-authored-by: Jhen-Jie Hong <iainst0409@gmail.com>
* llama : use posix_madvise() instead of madvise() derived from BSD
sed -i 's,\<madvise\>,posix_&,g;s,\<MADV_,POSIX_&,g' llama.cpp
* ggml : use sysconf(_SC_PAGESIZE) instead of getpagesize() derived from BSD
sed -i 's,getpagesize(),sysconf(_SC_PAGESIZE),g' ggml.c
* metal : use sysconf(_SC_PAGESIZE) instead of getpagesize() derived from BSD
sed -i 's,getpagesize(),sysconf(_SC_PAGESIZE),g' ggml-metal.m
* Very minor speedup via simd-group synchronization in f16 x f32
* Another very minor speedup on metal
* Quite significant PP speedup on metal
* Another attempt
* Minor
* Massive improvement for TG for fp16
* ~4-5% improvement for Q8_0 TG on metal
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* ggml_metal_init: Show all Metal device instances in the system
Also show the default Metal device that was picked.
* Update ggml-metal.m
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Somewhat faster f16 x f32 matrix multiply kernel
* Better use 32 thread groups for f16 x f32
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>