* fix track_max_mem in forward_batch_wo_cache_flash_attn_train
* remove unnecessary Adam(W) optimizer tensors.
reduces optimizer memory overhead from 7*modelsize to 2*modelsize.
additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t.
bumps training checkpoint file version, but old checkpoints can still be read.
new version with less tensors is saved.
* add gradient clipping to AdamW
* Fix reset of unused g->nodes and g->grads to NULL
* implement gradient checkpointing for training
reduces memory overhead from O(n_layer) to O(sqrt(n_layer))
as explained in readme of https://github.com/cybertronai/gradient-checkpointing
* remove unused compute buffer 3
* add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
* change AdamW decay parameter to work like the torch AdamW decay parameter
It is now relative to Adam learning rate `alpha*sched`.
Before that it was relative to `sched` only.
`alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1]
* change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT
* change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW
btw: the default weight decay parameter for torch.optim.AdamW is 0.01
* bug fixes for cross entropy loss
ggml_cross_entropy_loss: sums where not correctly added in workload of each thread
ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues
guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16
cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup.
so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance.
* fix test-grad0 for cross_entropy_loss
the second argument to cross_entropy_loss must sum up to 1 for each row
* fix test-grad0 for soft_max
dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work
instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0)
* improve finite differences of test-grad0 by using double instead of float
* change cross_entropy_loss to output average over all rows
this helps keeping the loss and gradients in a sane range
* improve gradient checkpointing
sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal.
since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different:
```
given: n, u, v
objective: minimize(a*u+b*v) where a*b=n, a>0, b>0
b=n/a
minimize(a*u+v*n/a)
diff(a*u+v*n/a, a) = u - (v*n/a)/a
diff(a*u+v*n/a, a) == 0
u - (v*n/a)/a == 0
u == v*n/(a*a)
u*a*a = v*n
a*a = v*n/u
a = sqrt(n*v/u)
```
this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage.
* disable gradient checkpointing debug output
* llama : fix rope usage in train-text-from-scratch after ChatGLM change
* add more training parameters:
--enable-restart N Only for Adam optimizer. Enable restarts of cos-decay
--disable-restart N Only for Adam optimizer. Disable restarts of cos-decay
--opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero.
--opt-delta N Maximum delta for delta convergence test. Disabled when <= zero.
--opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero.
--adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero.
--adam-min-alpha N Adam minimum learning rate alpha, usually 0.1 * alpha
* replace memcpy with reshape operation so that the graph is not cut at the input
this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it
* remove unused function argument from get_example_targets_batch
* measure and print total training time
* add optimization callback to ggml_opt_resume_g
this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)).
can be used for dynamic learning schedule and setting input data for batches before each iteration
* use optimization callback in training
allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters
reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration
* add minimum number of tensor dimensions to apply weight decay (default 2)
this allows to not apply weight decay to bias parameters
* rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup
* fix increase of model.train_samples and model.train_tokens
now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations
* change sampling parameters for prediction after training to defaults of common.h
and clarify what is context for prediction and what are generated tokens
* tighten abs error bounds for cross_entropy_loss in test-grad0
* add conditional compilation of using F16 exp in flash attention
uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention
* tighten abs error bounds for flash_attn in test-grad0
* tighten abs error bounds for sqrt in test-grad0
* remove out-commented vectorized code of opt_adam
the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead
* ggml : update ggml_rms_norm_back with configurable eps
* llama training : fix ggml_rms_norm_back calls to pass configurable eps
* remove trailing whitespace
* add train function using automatic gradient checkpointing backward pass and allocator
* in train function replace add_inplace by regular add
because using add_inplace seems to result in different gradients
* don't use allocate hash_map on context
because the context has no_alloc=True when using memory allocator resulting in NULL data pointers
* correctly clone reshape and permute operations by also cloning tensor->nb values
* fix variable name and add missing type cast
* terminate recursive tensor cloning when reaching tensor without src tensors
* correctly clone view tensors by setting data pointers
without this the checkpointing would only work when being used together with memory allocator
* fix variable names
* swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn`
* add input tensors as checkpoints
so that recursive tensor cloning of gradient checkpointing terminates on input tensors
* fix variable name and add missing boolean negation
* make sure some tensors are not reallocated by inserting new temporary nodes depending on them:
output and parameter gradient tensors need to be available at the end of the graph execution
parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration
checkpoint tensors are allocated all together to reduce memory allocator fragmentation
afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs
* fix ASSERT to work with zero layers
* add training options whether to use allocator and/or unified training function
* integrate unified training function which may use memory allocator
the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing
* format name of cloned tensors with " (clone)" suffix
* set names for tensors in unified train function for easier debugging
* allocate graph on context using ggml_new_graph
* remove handwritten training functions
* remove unused training parameters "use_scratch" and "use_unified"
* remove trailing whitespace
* remove unused train params: mem_compute1_gb & mem_compute2_gb
mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions
mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented)
* remove unused forward_batch function
* add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly
* only use ggml_allocr_alloc when tensor has NULL data and is no view
* fix test when to create temporary backward graph
temporary backward graph is only necessary when using checkpointing
* fix memory "leak" in optimizers
each iteration a new cplan with new memory for work data was allocated.
now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data.
* reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator
with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory.
the computation results are the same
* add API functions to access llama model tensors
* add stub example for finetuning, based on train-text-from-scratch
* move and remove code
* add API functions to access remaining model parameters:
mult, head and rot
* first draft for LORA finetune training
* remove const model and layer arguments in API functions for accessing model tensors
* bug fixes to make finetune compile
automatic allocator does not work yet
* add debug prints for training memory improvements
* fix names of lora tensors
* avoid stack overflow resulting from big ggml_cgraph
replace stack allocation and ggml_build_forward by ggml_new_graph in combination with ggml_build_forward_expand
* replace llama API functions to get model tensors by one function to get model tensor by name
LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
* remove unused call to not existing llama_get_layer_from_model
* implement ggml_compute_forward_out_prod_q_f32
* remove trailing whitespace
* add lora finetune support on quantized base model tensors
* add ggml_add_cast API function
this function works like ggml_add, but accepts a data type for the resulting tensor.
only supported for quantized src0 input.
* use ggml_add_cast in finetuning
lora-applied weights will now have data type F32, which improves gradients when finetuning quantized base models
* bug fix: actually use result type passed to ggml_add_cast
* make sure base model tensors data cannot be used in viewable operations
memory allocator would try to make lora application inplace on base model tensors.
since those are memory mapped this will result in memory access violations
* fix bug in ggml_out_prod which resulted in wrong n_dims of result tensors
* avoid keeping in memory ALL of the gradients
The problem here stems from ggml_graph_reset. This function is called in the optimization function, before each graph computation, to reset the gradients to zero. This required a unique memory slot for each gradient: allocating memory from a previosly freed memory location might lead to non-zero input gradients.
During ggml_compute_backward the gradients are build stepwise by adding or substracting new values, starting from a OP_NONE tensor which needs to contain zero-values. This requires the graph reset.
To avoid this I now remember in ggml_build_backward_expand the original OP_NONE gradient tensors in a hash table, which is passed to ggml_compute_backward. There instead of using add (or sub or similar) I test whether the existing gradient to be changed is a zero-valued-tensor by looking up its existence in the hash table. When it is such a zero-tensor it will not be modified, but replaced by the value to be added, otherwise the regular add (not inplace, allocator will take care of this) will be used. This way none of those zero-tensor values will be necessary in the final backward graph and more importantly they won't need a unique memory slot, just to make them zero.
* remove trailing whitespace
* remove debug prints and function to compute tensor data hash
* improve optimization iteration prints
* adjust maximal values to support finetuning 3B models
* change default finetune params lora_r and lora_alpha to match the n_rank parameters of 4
* bug fix: make sure finetune input gradient is allocated at begin and kept until end
* remove unnecessary src tensor from ggml_get_rows_back
we don't need data of src[2] for computation, only to setup the correct output shape.
remove dependency on src[2], so that allocator can work more freely.
the computational graph is still completely determined, because the output shape is naturally included.
this is similar to how ggml_reshape does it.
* remove unnecessary src tensor from ggml_repeat & ggml_repeat_back
we don't need data of src[1] for computation, only to setup the correct output shape.
remove dependency on src[1], so that allocator can work more freely.
the computational graph is still completely determined, because the output shape is naturally included
* resolve todo
allocator will only make it inplace when they are of the same type
* mixing multiple LORA adapters is now possible
pass more than one '--lora FNAME' argument to apply more than one LORA.
use '--lora-scaled FNAME S' when you want to specify a user-defined scale for an adapter.
* add option to save finetune output every N iterations
* also save latest finetune output with ITERATION="LATEST" and print where files are saved
saving with LATEST makes it easier to resume training from the latest checkpoint
the string "LATEST" can be configured with command line option "--fn-latest STR"
* update checkpoint train stats before saving via "--save-every"
* add command line option `--rank-wo N` for rank of wo tensor
* update finetune README
* fix dump_non_result_info_yaml to output multiple lora adapters
* bug fix: replace GGML_TYPE_SIZE[t] by ggml_type_size(t)
* replace llama_n_mult by llama_n_ff
* finetune bug fixes to compile with merged in code from master
* remove prediction related code to reduce duplicated code with main
use main instead
* reduce large memory overhead in train-text-from-scratch
all gradients had to be pinned so that graph_reset works correctly.
this is no longer necessary with the changes to ggml_compute_backward introduced in this PR.
* add comment explaining why finetune checkpoints are allocated in one block
* make default value of float member a float literal
* handle rms_norm and rope parameters the same as in train-text-from-scratch
* remove unused code
* remove vocab related code as it is unnecessary
* add LLM_KV_TRAINING_TYPE to train-text-from-scratch checkpoints
so that they can be differentiated from lora finetune checkpoints
* add gguf constants and load/save functions from train-text-from-scratch
* add load & save lora finetune checkpoints via gguf
* add python script to convert old finetune checkpoint files to gguf
* remove old checkpoint save & load code
* remove code to print data checksums which was used to verify correctness of new gguf code
* omit tokenization when training is disabled, only save llama lora adapter
training can be disabled by passing '-n 0' to finetune
* remove trailing whitespace
* update README.md
* implement ggml_compute_forward_repeat_f16
* avoid stack overflow of large cgraphs in test-grad0
* add ggml API functions ggml_unravel_index, ggml_get_i32_nd and its analogs for set and for f32
ggml_get_i32_1d, ggml_set_i32_1d, ggml_get_f32_1d, ggml_set_f32_1d now support non-contiguous tensors.
in case of non-contiguous tensor, the 1d index is unraveled into a multi index using ggml_unravel_index to be passed to '_nd' function equivalent.
this fixes a bug in test-grad0 which happens due to ggml_build_backward not building purely contiguous tensors anymore
* increase test-grad0 context mem size to accommodate for bigger cgraph
* add sanity check to ggml_compute_backward, asserting the correct shape of gradients
* fix ggml_acc_or_set to return tensor of correct shape
* remove unused 'inplace' argument from ggml_compute_backward function
inplace operations to add gradients are no longer created by ggml_compute_backward
use allocator to automatically make inplace operations
* add missing argument 'int i0' to ggml_get_i32_nd & ggml_set_i32_nd header declarations
* fix error message in ggml_allocr_alloc to display actual max_avail
* fix check_gradient
ggml_build_backward_expand was previously replaced by ggml_build_backward, but the assignment of forward graph to backward graph missing
* use tensor->view_src instead of ggml_is_view and get_view_source
* move gradient checkpointing code into ggml, new API function:
// build gradient checkpointing backward graph gb for gf using provided checkpoints
// gb_tmp will contain original backward graph with rewritten backward process nodes,
// but without the second forward pass nodes.
GGML_API void ggml_build_backward_gradient_checkpointing(
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
struct ggml_cgraph * gb_tmp,
struct ggml_tensor * * checkpoints,
int n_checkpoints);
* replace custom data getters and setters by ggml functions
* train-text-from-scratch can train (full finetune) gguf models
just pass the gguf model via `--checkpoint-in FN`.
after this, to continue training, pass the generated checkpoint instead of the original gguf model.
tested with smaller models, bigger models may exceed available memory.
use (LORA) finetune for those.
* remove trailing whitespace
* add option to save train-text-from-scratch output every N iterations
* update README.md
* fix warnings
* fix warnings
* remove finetune option to disable allocator
the allocator should always be used.
by making sure that it is always used it gets easier to implement automatic memory requirements computation
* add tensor checkpoints only when gradient checkpointing is enabled
* initialize opt ggml context if none was provided
* add ggml-alloc API function 'ggml_allocr_max_size' to get max size of alloc
GGML_API size_t ggml_allocr_max_size(struct ggml_allocr * alloc);
* finetune: automatically allocate all memory and changes to command line options
remove '--n_examples N' parameter, as it no longer makes sense to call optimization process multiple times in a loop.
add '--only_write_lora' command line option: will skip tokenization and training, to only write a llama.cpp comptabile LORA adapter.
remove memory buffer related command line options.
improve iteration console output.
* add finetune to Makefile
* update README.md
* print time per iteration and estimate remaining time
* increase measured alloc size by tensor_alignment
ggml_allocr_reset will reduce the given size by up to tensor_alignment-1
* fix README.md
* add some more allocator debug prints
* bug fix, probably solves the 'ggml_allocr_alloc: not enough space in the buffer' issue
* revert last commit
"bug fix, probably solves the 'ggml_allocr_alloc: not enough space in the buffer' issue"
"alloc was freeing an externally allocated tensor, because it calculated the end of allocator memory as alloc->data + alloc->max_size instead of alloc->data + alloc->size."
This is intentional to reduce the risk of freeing external tensors when measuring. Unless max_size is not properly calculated, I don't see why this is an issue.
* remove unnecessary "0x" before "%p" output
* move measurement memory segment to upper region of the address space
* update README.md
* fix printf format warnings
* add missing gguf_free in load_checkpoint_lora_file
* load default rms_norm and rope parameters from base model
* add gradient accumulation
specify number accumulation steps with '--grad-acc N'.
this will simulate a bigger batch size of grad_acc*batch.
* fix tracking of train_samples and train_tokens
* build : fix compile warnings
* ggml : fix L-BFGS linesearch loop
* improve finetune time measurement
fix printf warnings on system where int64_t is (long int).
change time datatypes to double because values get big with long training times.
exclude file saving from time measurement.
converge faster to actual time per iteration by removing very small first duration before first iteration was performed.
fix bug in output of total training time, the reported value was 1000 times to small.
* specify default lora rank with '--lora-r N'
'--lora-r N' will specify default rank for all tensors
'--rank-wq N', etc. will override this default rank for specific tensor types.
* fix gradient accumulation bug where the same batch was used for each microstep
* fix gradient accumulation bug where the same batch was used for each microstep
* support grouped-query-attention in ggml_flash_attn and ggml_flash_attn_back
k and v can now be repeated in q along ne[2]
in forward pass just use modulo to compute k and v indices, like ik2 = iq2 % nek2.
in backard pass this won't work as easy, because multiple threads will compete to accumulate to the same k->grad[:,ik1,ik2,ik3] and v->grad[:,iv1,iv2,iv3].
so we change the parallelization over q rows to be over k rows. this ensures non-overlapping (ik2,ik3) across threads.
in each thread we then iterate over the number of repetitions of k/v in q to compute iq2 as iq2 = ik2 + irep*nek2.
since ne2 is not the same for q,k and v we also change how the gradients are concatenated into the result tensor.
additionally the offsets of gradq, gradk and gradv in the result tensor are now memory aligned.
we also simplify the compute_backward part of flash_attn to use ggml_reshape instead of switching over the number of dimensions.
this needs a small change to ggml_reshape, removing the assertion of second argument to be contiguous.
since only the shape (ne) of the second reshape argument is of relevance, its memory layout (nb) is irrelevant -> it can very well be non-contiguous.
change test-grad0 to also test for repeated k/v in q.
this changes the rng and now results in small gradient differences in softmax. these solely come from using f16 exp table lookup in forward softmax: when temporarily changing softmax to use actual exp function, the reported gradient differences go away. gradient differences coming solely from f16 table lookup are acceptable.
added a note to explain this.
* add llama API functions to get grouped-query-attention n_head parameter 'n_head_kv'.
* fix finetune to support grouped-query-attention (using flash-attention)
note: ggml changes to ggml_out_prod are necessary to support grouped-query-attention without flash-attention.
* support broadcastable a in out_prod(a, b) and backward pass of broadcasting mul_mat(a, b)
* test broadcasting mul_mat backward pass
* decouple random number generator of each operation test
when changing one test the rng of others tests is not influenced anymore
* add comment briefly describing what ggml_repeat_back does
* simplify broadcasting mul_mat backward using ggml_repeat_back
* add cgraph evaluation order member and corresponding enum type
this controls in which order ggml_build_forward visits source nodes.
by default the nodes are visited left to right, i.e. src[0] first.
in some cases it is beneficial for ggml-alloc to visit in a different order.
two possible orders are supported: left-to-right (src[0] first) and right-to-left (src[0] last).
* measure max compute size for each cgraph eval order and use best order
this can bring huge memory savings:
e.g. codellama-34b with n_ctx=64, n_batch=1 goes from 92927.8mb down to 4627.6 MB
* remove unused command line options
* add sample start patterns and options to force new or by default resume last shuffling
* update shuffle rng state on reshuffle
* exclude known zero values from computations in flash_attn_f32 & flash_attn_back_f32
* remove probably unnecessary exception type flags from stringstream
* pass correct max number of tokens to llama_tokenize
* account for possible leading whitespace that will be added by tokenizer
e.g. '\t' will be tokenized by llama spm tokenizer to [29871, 12]
* use unrolled vec_mad in out_prod
y is vec_mad result vec.
x is vec_mad input vec.
v is vec_mad input scalar.
ggml_vec_mad_f32_unroll will internally loop over x and v with same y.
GGML_VEC_MAD_UNROLL is by default defined to 32.
This value is empirical optimized using performance test runs of out-prod in openllama-3b finetune with 256 context length and batch size 1. It gives 23% performance boost for out_prod.
Full measurements of out-prod runtime in ms:
unroll_xv unroll_yv
1 67014.643 87826.469
2 77117.552 89077.656
4 72091.311 109121.657
8 61077.543 88678.334
16 56914.67 79514.947
24 59024.595 84350.254
28 55952.446 83368.73
32 51476.658 85177.745
36 55973.792 84659.92
40 55139.616 93844.738
48 60736.392 93330.267
64 99856.878 116994.99
Second column is when unrollying yv instead of xv
* set lora_alpha to value of lora_r if it is not set via command line
otherwise only changing lora_r will change scaling of lora adapter used in prediction
* reshuffle original sample order instead of the previous shuffled order
otherwise resumed reshuffle will not result in same sample order
* block tiling for out-prod inspired by mul-mat
block sizes are empirically optimized
roughly doubles the flops of out-prod
* exclude some more known zero values from computations in flash_attn_f32 & flash_attn_back_f32
* add static keywords
* remove outcommented old code
* update train-text-from-scratch with tokenization, sample selection and shuffling from finetune
* remove lbfgs related train parameters
* move common train functions into common/train.[h|cpp]
* move train state into struct train_state
* move train data saving code into callback to unify code of opt_callback
train_params are still different in finetune and train-text-from-scratch, so it can't yet be moved to train.h|cpp
* move common train params into common/train
* move common opt_callback into common/train
* fix consume_common_train_arg
* save and load head_count_kv in lora checkpoints
* increase train_samples by used_samples instead of number of batches
on batch can contain more than one sample when option "fill_with_next_samples" is used
* fix usage of llama_tokenize
* remove static from process_escape since we need it exposed in header
* fix code formating of long function declarations
* fix condition in load_train_state_gguf
* use die("msg") instead of replace GGML_ASSERT(!"msg") or throw std::runtime_error("msg")
* fix saving and loading of training type
* remove terminating '\0' from tokenization
(llama_tokenize is now passed the string length instead of relying on terminating '\0')
* fix compile warnings
* fix compile warnings
* use new/delete for train_state instead of malloc/free
using malloc may result in seg faults when trying to assign string fields
* assert that sample_count > 0, avoiding division by zero
* fix frand to return value in interval [0,1)
* add train option "--sample-random-offsets"
Use samples beginning at random offsets.
The offset is only applied to the first sample in each batch context window.
Together with "--fill-with-next-samples" this may help for training endless text generation.
For example given a dataset containing samples "abcd", "ABCD", "0123".
With context size of 8 and options "--fill-with-next-samples", "--no-separate-with-eos", "--no-separate-with-bos",
the context windows of batches could only be filled with "abcdABCD", "ABCDabcd", "0123abcd", etc.
With "--sample-random-offsets" it can also be filled with "23abcdAB", "bcd0123A", etc.
* deduplicate code into function
* remove n_rot hparam, as it must always be hparam.n_embd_head()
* align code
* assert correct base model tensor shapes
* move some params from lora hparams into model hparams and load model params from gguf
this equalizes the model definition in finetune and text-from-scratch and removes the need for additional llama api functions to get model parameters
* remove now unnecessary llama API functions to get model params that where added by this PR
* train-text-from-scratch: automatically allocate model tensors, remove option '--mem-model N'
* train-text-from-scratch: automatically allocate opt context
* train-text-from-scratch: automatically allocate input tensors
* train-text-from-scratch: automatically allocate compute memory
* remove unused options and equalize train-text-from-scratch with finetune
* initialize opt->loss_after with zero
* add export-lora program
* remove trailing whitespace
* add export-lora build in Makefile
* remove unused struct tensor_info from export-lora
* add export-lora build dependency to llama
because it depends on common, which depends on llama
* update finetune README.md
* cancel optimization when specified number of epochs is completed
* improve handling of export-lora arguments
print errors and warnings when files could not be read or created
* Fix export-lora.cpp "not enough space in the context's memory pool" (#1)
* Fix export-lora.cpp "not enough space in the context's memory pool"
Without this patch, export-lora would sometimes error with "not enough space in the context's memory pool (needed 656784, available 656800)".
* increase required context size by 5*GGML_MEM_ALIGN instead of plain 16
---------
Co-authored-by: xaedes <xaedes@gmail.com>
* improve handling of not yet supported tensor types
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: meatbag-18a <145869052+meatbag-18a@users.noreply.github.com>
* Resync my fork with new llama.cpp commits
* examples : rename to use dash instead of underscore
* New model conversions
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Fix für #2721
* Reenable tokenizer test for LLaMa
* Add `console.cpp` dependency
* Fix dependency to `common`
* Fixing wrong fix.
* Make console usage platform specific
Work on compiler warnings.
* Adapting makefile
* Remove trailing whitespace
* Adapting the other parts of the makefile
* Fix typo.
* Fixing the last deviations from sentencepiece indicated by test-tokenizer-1
* Simplify logic
* Add missing change...
* Fix ugly compiler warning
* llama_tokenize should accept strings containing NUL now
* Adding huichen's test case
* Keep static libs and headers with install
* Add logic to generate Config package
* Use proper build info
* Add llama as import library
* Prefix target with package name
* Add example project using CMake package
* Update README
* Update README
* Remove trailing whitespace
* Do not use _GNU_SOURCE gratuitously.
What is needed to build llama.cpp and examples is availability of
stuff defined in The Open Group Base Specifications Issue 6
(https://pubs.opengroup.org/onlinepubs/009695399/) known also as
Single Unix Specification v3 (SUSv3) or POSIX.1-2001 + XSI extensions,
plus some stuff from BSD that is not specified in POSIX.1.
Well, that was true until NUMA support was added recently,
so enable GNU libc extensions for Linux builds to cover that.
Not having feature test macros in source code gives greater flexibility
to those wanting to reuse it in 3rd party app, as they can build it with
FTMs set by Makefile here or other FTMs depending on their needs.
It builds without issues in Alpine (musl libc), Ubuntu (glibc), MSYS2.
* make : enable Darwin extensions for macOS to expose RLIMIT_MEMLOCK
* make : enable BSD extensions for DragonFlyBSD to expose RLIMIT_MEMLOCK
* make : use BSD-specific FTMs to enable alloca on BSDs
* make : fix OpenBSD build by exposing newer POSIX definitions
* cmake : follow recent FTM improvements from Makefile
* build : on Mac OS enable Metal by default
* make : try to fix build on Linux
* make : move targets back to the top
* make : fix target clean
* llama : enable GPU inference by default with Metal
* llama : fix vocab_only logic when GPU is enabled
* common : better `n_gpu_layers` assignment
* readme : update Metal instructions
* make : fix merge conflict remnants
* gitignore : metal
* Allow quantize tool to only copy tensors to allow repackaging models.
* Slightly better logic when requantizing.
* Change help message to go to `stdout`.
* llama2c : fix segfault if vocab is not found
* llama2c : fix mismatch between new[] and delete
* llama2c : fix basename on Windows
* llama2c : use a destructor to prevent memory leaks
* fix track_max_mem in forward_batch_wo_cache_flash_attn_train
* remove unnecessary Adam(W) optimizer tensors.
reduces optimizer memory overhead from 7*modelsize to 2*modelsize.
additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t.
bumps training checkpoint file version, but old checkpoints can still be read.
new version with less tensors is saved.
* add gradient clipping to AdamW
* Fix reset of unused g->nodes and g->grads to NULL
* implement gradient checkpointing for training
reduces memory overhead from O(n_layer) to O(sqrt(n_layer))
as explained in readme of https://github.com/cybertronai/gradient-checkpointing
* remove unused compute buffer 3
* add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
* change AdamW decay parameter to work like the torch AdamW decay parameter
It is now relative to Adam learning rate `alpha*sched`.
Before that it was relative to `sched` only.
`alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1]
* change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT
* change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW
btw: the default weight decay parameter for torch.optim.AdamW is 0.01
* bug fixes for cross entropy loss
ggml_cross_entropy_loss: sums where not correctly added in workload of each thread
ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues
guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16
cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup.
so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance.
* fix test-grad0 for cross_entropy_loss
the second argument to cross_entropy_loss must sum up to 1 for each row
* fix test-grad0 for soft_max
dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work
instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0)
* improve finite differences of test-grad0 by using double instead of float
* change cross_entropy_loss to output average over all rows
this helps keeping the loss and gradients in a sane range
* improve gradient checkpointing
sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal.
since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different:
```
given: n, u, v
objective: minimize(a*u+b*v) where a*b=n, a>0, b>0
b=n/a
minimize(a*u+v*n/a)
diff(a*u+v*n/a, a) = u - (v*n/a)/a
diff(a*u+v*n/a, a) == 0
u - (v*n/a)/a == 0
u == v*n/(a*a)
u*a*a = v*n
a*a = v*n/u
a = sqrt(n*v/u)
```
this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage.
* disable gradient checkpointing debug output
* llama : fix rope usage in train-text-from-scratch after ChatGLM change
* add more training parameters:
--enable-restart N Only for Adam optimizer. Enable restarts of cos-decay
--disable-restart N Only for Adam optimizer. Disable restarts of cos-decay
--opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero.
--opt-delta N Maximum delta for delta convergence test. Disabled when <= zero.
--opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero.
--adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero.
--adam-min-alpha N Adam minimum learning rate alpha, usually 0.1 * alpha
* replace memcpy with reshape operation so that the graph is not cut at the input
this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it
* remove unused function argument from get_example_targets_batch
* measure and print total training time
* add optimization callback to ggml_opt_resume_g
this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)).
can be used for dynamic learning schedule and setting input data for batches before each iteration
* use optimization callback in training
allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters
reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration
* add minimum number of tensor dimensions to apply weight decay (default 2)
this allows to not apply weight decay to bias parameters
* rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup
* fix increase of model.train_samples and model.train_tokens
now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations
* change sampling parameters for prediction after training to defaults of common.h
and clarify what is context for prediction and what are generated tokens
* tighten abs error bounds for cross_entropy_loss in test-grad0
* add conditional compilation of using F16 exp in flash attention
uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention
* tighten abs error bounds for flash_attn in test-grad0
* tighten abs error bounds for sqrt in test-grad0
* remove out-commented vectorized code of opt_adam
the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead
* ggml : update ggml_rms_norm_back with configurable eps
* llama training : fix ggml_rms_norm_back calls to pass configurable eps
* remove trailing whitespace
* add train function using automatic gradient checkpointing backward pass and allocator
* in train function replace add_inplace by regular add
because using add_inplace seems to result in different gradients
* don't use allocate hash_map on context
because the context has no_alloc=True when using memory allocator resulting in NULL data pointers
* correctly clone reshape and permute operations by also cloning tensor->nb values
* fix variable name and add missing type cast
* terminate recursive tensor cloning when reaching tensor without src tensors
* correctly clone view tensors by setting data pointers
without this the checkpointing would only work when being used together with memory allocator
* fix variable names
* swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn`
* add input tensors as checkpoints
so that recursive tensor cloning of gradient checkpointing terminates on input tensors
* fix variable name and add missing boolean negation
* make sure some tensors are not reallocated by inserting new temporary nodes depending on them:
output and parameter gradient tensors need to be available at the end of the graph execution
parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration
checkpoint tensors are allocated all together to reduce memory allocator fragmentation
afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs
* fix ASSERT to work with zero layers
* add training options whether to use allocator and/or unified training function
* integrate unified training function which may use memory allocator
the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing
* format name of cloned tensors with " (clone)" suffix
* set names for tensors in unified train function for easier debugging
* allocate graph on context using ggml_new_graph
* remove handwritten training functions
* remove unused training parameters "use_scratch" and "use_unified"
* remove trailing whitespace
* remove unused train params: mem_compute1_gb & mem_compute2_gb
mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions
mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented)
* remove unused forward_batch function
* add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly
* only use ggml_allocr_alloc when tensor has NULL data and is no view
* fix test when to create temporary backward graph
temporary backward graph is only necessary when using checkpointing
* fix memory "leak" in optimizers
each iteration a new cplan with new memory for work data was allocated.
now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data.
* reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator
with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory.
the computation results are the same
* add missing lctx argument to get_example_targets_batch
* implement llama model file saving using gguf
checkpoint loading and saving disabled, to be replaced by loading and saving via gguf
* implement loading/saving of checkpointing files using GGUF
* bug fixes
* add checkpoint file version for future compatibility
* update readme with gguf filenames
* save & load opt->just_initialized value
* add first draft for checkpoint conversion script
* add gguf arch and ftype
* save opt parameter counter as uint64
* add gguf key and tensor names for optimizer and training
* add layer_norm_rms_eps to checkpoint convert script
* use same GGUF_GET_KEY macro as in llama.cpp
* use norm_rms_eps, and rope parameters and command line options to set them
* fix memory corruption bug in gguf
ctx->kv and ctx->infos was reallocated using not-aligned realloc, but freed with aligned free.
to fix this a GGML_ALIGNED_REALLOC was added, but there is no posix_memalign_realloc function.
so on non-windows and non-mingw32 platforms we fall back to aligned malloc, followed by copying
and freeing the old data.
* add gguf example cmake file
* bug fixes in tokenize_file
* bug fixes in load_llama_model_gguf
* bug fix: init model when no checkpoint was loaded
* bug fix in read_tensor_by_name
* bug fix in load_opt_context_gguf
* avoid printing lots of spaced on the unusual case that loss gets nan
* set name of tensors with empty name from what was read from gguf
* remove trailing whitespace
* print data checksums before saving and after loading to verify correctness
* bug fixes for convert-train-checkpoint-to-gguf
* temporarily add code to write old checkpoint files
used to verify that old checkpoint files are correctly converted to gguf
* bug fixes for convert-train-checkpoint-to-gguf.py loading checkpoints with opt_version=0
* remove code used to verify correctness of checkpoint file conversion
* remove trailing whitespace
* remove prediction related code
use main for prediction, it is better optimized
* update train-text-from-scratch README.md
* fix non-windows GGML_ALIGNED_REALLOC
* add missing blank line at end of file
* remove GGML_ALIGNED_REALLOC and use normal malloc/realloc/free for gguf ctx->kv & ctx->infos
* train : fix compile warnings
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama2.c: direct gguf output (WIP)
* Simplify vector building logic
* llama2.c gguf conversion: fix token types in converter
* llama2.c: support copying vocab from a llama gguf model file
* llama2.c: update default path for vocab model + readme
* llama2.c: use defines for gguf keys
* llama2.c: escape whitespaces w/ U+2581 in vocab converter the llama.cpp way
* llama2.c converter: cleanups + take n_ff from config
* Speedup tokenization
On current master it takes ~3.2 seconds to tokenize
Wikitext. With this change it becomes ~525 ms.
* Fixit: it was missing the piece after the last found occurence
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* tests : write a Python tokenizer test (wip)
* llama : prefix input text for tokenization with whitespace
* llama : distinguish pieces from decoded text + fix detokenization
* common : add comments
* examples : no longer manually add leading space when tokenizing
* tests : use Python to generate tokenizer tests for C++
* tests : add option to tokenize text files
ggml-ci
* tests : add test-tokenizer-1.py
* llama.cpp : fix LF token
* hellaswag : move the concat space for clarity
* tests : add falcon tests (py + cpp, currently do not pass Unicode)
ggml-ci
* common : temporary separate llama_detokenize calls for SPM and BPE
---------
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
* Fix bug in main.cpp where penalize_nl=false has no effect. It modifies the underlying logits array, but at this point we are already working on the candidates copy.
* Suppress redefinition warning for NOMINMAX on mingw. In my installation, this macro is already defined by /usr/lib/gcc/x86_64-w64-mingw32/11/include/c++/x86_64-w64-mingw32/bits/os_defines.h:45.
* main : fix indentation
* main : pass ctx to llama_token_nl()
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama.cpp : fix spm whitespace escaping + clean up
* main.cpp : spm - add whitespace in front of prompt
* test-tokenizer-0.cpp : spm - add whitespace in front of prompt
* Add llama_beam_search().
* Add '// Beam search' heading to llama.{h,cpp} after llama_grammar_accept_token().
* Add space around * pointers and & references.
* Add spaces around comparison and assignment operators.
* Prefer west const.
* Use llama_ prefix for structs in global namespace.
* Delete obsolete comment from an earlier revision.
* Change eos to eob in llama_beam and llama_beam_view structs.
* server : add n_probs param in chat UI
* server : keep message data array & show in probabilites component
* server : add simple popover component
* server : fix completion_probabilities undefined if not set n_probs
* server : implement Probabilites
* server : handle bytes
* server : make n_probs max to 10 for easy scroll
* server : adjust for dark/light mode
* server : Fix regenerated prompt
* server : update index.html.hpp
* server : convert prob to percentage + show original value as div title
* server : fix Probabilites not used if included empty str
* server : skip byte pair in display probabilites
* server : remove array check of completion_probabilities in messages
* skip empty array or byte pair (> 1) in Probabilites
* generate index.html.hpp
* fix incorrect prob convert if the str is already a known token
* use final response to show probabilities on stop
* revert unnecessary change
* correct probabilites usage
* remove unused function
* always send partial response for get correct probs of last to_send
* fix typo
* fix content of format_final_response
* refactor probs render & make pColor transparent if not found
* send empty string when got stop_pos in partial
* avoid unnecessary empty data event & send rest of partial tokens on stop
* use <br /> for new line
* skip -1 tok in loop to avoid send '' on end
* trim last new lines on stop
* revert unnecessary change
* use hipblas based on cublas
* Update Makefile for the Cuda kernels
* Expand arch list and make it overrideable
* Fix multi GPU on multiple amd architectures with rocblas_initialize() (#5)
* add hipBLAS to README
* new build arg LLAMA_CUDA_MMQ_Y
* fix half2 decomposition
* Add intrinsics polyfills for AMD
* AMD assembly optimized __dp4a
* Allow overriding CC_TURING
* use "ROCm" instead of "CUDA"
* ignore all build dirs
* Add Dockerfiles
* fix llama-bench
* fix -nommq help for non CUDA/HIP
---------
Co-authored-by: YellowRoseCx <80486540+YellowRoseCx@users.noreply.github.com>
Co-authored-by: ardfork <134447697+ardfork@users.noreply.github.com>
Co-authored-by: funnbot <22226942+funnbot@users.noreply.github.com>
Co-authored-by: Engininja2 <139037756+Engininja2@users.noreply.github.com>
Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
Co-authored-by: jammm <2500920+jammm@users.noreply.github.com>
Co-authored-by: jdecourval <7315817+jdecourval@users.noreply.github.com>
* Implementing strided computation of perplexity
* Alternative way to output PPL results
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* server: allow json array in prompt or content
We accept an array of strings and numbers representing tokens,
in addition to the current string valued prompt or content.
This allows direct token input, so that any special tokens
can be processed and used at the frontend during the construction
of the json data, before sending to the server. And the server
does not need to know or parse special tokens from textual input.
With this, we can use EOS and BOS used in llama-2-chat models.
* server: use tokenizePrompt(json) and default "" if empty prompt
* server: fix prompt check
* server: tokenize endpoint no longer adds BOS
* llama : add benchmark example
* add to examples CMakeLists.txt
* fix msvc build
* add missing include
* add Bessel's correction to stdev calculation
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* improve markdown formatting
* add missing include
* print warning is NDEBUG is not defined
* remove n_prompt and n_gen from the matrix, use each value separately instead
* better checks for non-optimized builds
* llama.cpp : fix MEM_REQ_SCRATCH0 reusing the value of n_ctx of the first call
* fix json formatting
* add sql output
* add basic cpu and gpu info (linx/cuda only)
* markdown: also show values that differ from the default
* markdown: add build id
* cleanup
* improve formatting
* formatting
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* support for templates in browser LocalStorage
* sync accepted #2409 fix from upstream
* convert autosave invocation to useEffect
* Apply suggestions from code review
Co-authored-by: Jhen-Jie Hong <iainst0409@gmail.com>
* Regen index.html.cpp, suggested from code review
---------
Co-authored-by: Jhen-Jie Hong <iainst0409@gmail.com>
* server : implement json-schema-to-grammar.mjs by follow python impl
* server : add grammar support in chat.mjs
* server : implement grammer param in the UI
* server : generate .hpp
* server : remove trailing whitespaces
* server : generate .hpp
* server : fix sort of prop pairs
* server : optimize regex & iteration
* Update Vim plugin
* Remove getbufoneline usage, Add input bind example.
getbufoneline() appears to be a recently added function and has been
replaced with getbufline for compatibility.
An additional example that explains how to add a keybind that works in
insert mode was added.
* examples : add JSON schema grammars
* complete JSON grammar
* ensure primitive types can be used as root of schema
* support integer type and adjust usage text
* fix hellaswag print format, cast away warning in test-double-float
* c++11 cannot use designated initializers
* add static to test-grad0.c internal functions
* use memcpy in test-double-float.c
* port c tests to c++
* use initializer list for ggml_init_params
* add `--in-prefix-bos` to prefix BOS to user inputs; keep EOS
The BOS precedes the string specified by `--in-prefix`.
Model generated EOS is now kept in the context.
It provides a way to strictly following the prompt format used in
Llama-2-chat.
The EOS handling also benefits some existing finetunes that uses
EOS to mark the end of turn.
* examples/common: move input_prefix_bos to other bools
* make rms_norm_eps a parameter
* add rms_norm_eps to command line
* fix baby llama, test-grad0
* use scientific notation for eps param in the help
ggml-ci
* makefile: correct deps for server
* server: tighten settings layout a little
* server: expose all currently configured generation params in UI
* server: expose remaining generation params, for the adventurous
* server: embetter mirostat fields
* llama, main : constrain sampling to grammar
* allow loading grammar from file
* fix whitespace errors
* handle & print parser errors
* add comments to grammar syntax and allow newlines where unambiguous
* add missing include
* support alternates in root rule
* fix bugs with empty token and EOS
* adjust JSON grammar
* remove swp file
* rewrite ternary expressions
Co-authored-by: Henri Vasserman <henv@hot.ee>
* use struct for grammar elements and add Unicode support
* add unicode escapes
* add inverse char ranges
* only sample full tokens (no peeking or truncation)
* llama : minor style changes
blindly applied in online editor - hopefully I didn't break something
* update help text
* add warning message if EOS is disabled
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Resync my fork with new llama.cpp commits
* examples : rename to use dash instead of underscore
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
A fix in Makefile for FreeBSD users. In the platfrom x86_64 is amd64. This fix resolve compilation using CFLAGS and CXXFLAGS with -march=native and -mtune=native
Add two examples for interactive mode using Llama2 models (thx TheBloke for models)
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Miku.sh: Set default model to llama-2-7b-chat
* Miku.sh: Set ctx_size to 4096
* Miku.sh: Add in-prefix/in-suffix opts
* Miku.sh: Switch sampler to mirostat_v2 and tiny prompt improvements
* ci : run ctest
ggml-ci
* ci : add open llama 3B-v2 tests
ggml-ci
* ci : disable wget progress output
ggml-ci
* ci : add open llama 3B-v2 tg tests for q4 and q5 quantizations
ggml-ci
* tests : try to fix tail free sampling test
ggml-ci
* ci : add K-quants
ggml-ci
* ci : add short perplexity tests
ggml-ci
* ci : add README.md
* ppl : add --chunks argument to limit max number of chunks
ggml-ci
* ci : update README
* Implement customizable RoPE
The original RoPE has pre-defined parameters
theta_i = 10000^(−2(i−1)/d), for i in [1, 2, ..., d/2]
Our customizable RoPE, ggml_rope_custom_inplace, uses
theta_i = scale * base^(−2(i−1)/d), for i in [1, 2, ..., d/2]
with the default matches the original
scale = 1.0
base = 10000
The new command line arguments
--rope-freq-base
--rope-freq-scale
set the two new RoPE parameter.
Recent researches show changing these two parameters extends the context limit with minimal loss.
1. Extending Context to 8K
kaiokendev
https://kaiokendev.github.io/til#extending-context-to-8k
2. Extending Context Window of Large Language Models via Positional Interpolation
Shouyuan Chen, Sherman Wong, Liangjian Chen, Yuandong Tian
https://arxiv.org/abs/2306.15595
3. NTK-Aware Scaled RoPE allows LLaMA models to have extended (8k+) context size without any fine-tuning and minimal perplexity degradation.
https://www.reddit.com/user/bloc97https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
For the bold, try adding the following command line parameters to your favorite model:
-c 16384 --rope-freq-base 80000 --rope-freq-scale 0.5
* ggml-metal: fix custom rope
* common: fix argument names in help
* llama: increase MEM_REQ_EVAL for MODEL_3B
It avoids crashing for quantized weights on CPU.
Better ways to calculate the required buffer size would be better.
* llama: make MEM_REQ_EVAL depend on n_ctx
* server: use proper Content-Type in curl examples
Without the header Content-Type: application/json, curl will POST with
Content-Type: application/x-www-form-urlencoded
Though our simple server doesn't care, the httplib.h used has a limit
with CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 8192
With Content-Type: application/json, we can send large json data.
* style : minor fixes, mostly indentations
* ggml : fix asserts
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Initial implementation
* Remove debug print
* Restore signature of llama_init_from_gpt_params
* Free guidance context
* Make freeing of guidance_ctx conditional
* Make Classifier-Free Guidance a sampling function
* Correct typo. CFG already means context-free grammar.
* Record sampling time in llama_sample_classifier_free_guidance
* Shift all values by the max value before applying logsoftmax
* Fix styling based on review
* MPI support, first cut
* fix warnings, update README
* fixes
* wrap includes
* PR comments
* Update CMakeLists.txt
* Add GH workflow, fix test
* Add info to README
* mpi : trying to move more MPI stuff into ggml-mpi (WIP) (#2099)
* mpi : add names for layer inputs + prep ggml_mpi_graph_compute()
* mpi : move all MPI logic into ggml-mpi
Not tested yet
* mpi : various fixes - communication now works but results are wrong
* mpi : fix output tensor after MPI compute (still not working)
* mpi : fix inference
* mpi : minor
* Add OpenMPI to GH action
* [mpi] continue-on-error: true
* mpi : fix after master merge
* [mpi] Link MPI C++ libraries to fix OpenMPI
* tests : fix new llama_backend API
* [mpi] use MPI_INT32_T
* mpi : factor out recv / send in functions and reuse
* mpi : extend API to allow usage with outer backends (e.g. Metal)
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* ggml_graph_compute: deprecate using ggml_context, try resolve issue #287
* rewrite: no longer consider backward compitability; plan and make_plan
* minor: rename ctx as plan; const
* remove ggml_graph_compute from tests/test-grad0.c, but current change breaks backward
* add static ggml_graph_compute_sugar()
* minor: update comments
* reusable buffers
* ggml : more consistent naming + metal fixes
* ggml : fix docs
* tests : disable grad / opt + minor naming changes
* ggml : add ggml_graph_compute_with_ctx()
- backwards compatible API
- deduplicates a lot of copy-paste
* ci : enable test-grad0
* examples : factor out plan allocation into a helper function
* llama : factor out plan stuff into a helper function
* ci : fix env
* llama : fix duplicate symbols + refactor example benchmark
* ggml : remove obsolete assert + refactor n_tasks section
* ggml : fix indentation in switch
* llama : avoid unnecessary bool
* ggml : remove comments from source file and match order in header
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
The original file name, `ggml-alpaca-7b-q4.bin`, implied the first-generation GGML. After the breaking changes (mentioned in https://github.com/ggerganov/llama.cpp/issues/382), `llama.cpp` requires GGML V3 now. Those model files are named `*ggmlv3*.bin`. We should change the example to an actually working model file, so that this thing is more likely to run out-of-the-box for more people, and less people would waste time downloading the old Alpaca model.
* use javascript generators as much cleaner API
Also add ways to access completion as promise and EventSource
* export llama_timings as struct and expose them in server
* update readme, update baked includes
* llama : uniform variable names + struct init
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update server instructions for web front end
* Update server README
* Remove duplicate OAI instructions
* Fix duplicate text
---------
Co-authored-by: Jesse Johnson <thatguy@jessejojojohnson.com>
* Generalize quantize_fns for simpler FP16 handling
* Remove call to ggml_cuda_mul_mat_get_wsize
* ci : disable FMA for mac os actions
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* expose simple web interface on root domain
* embed index and add --path for choosing static dir
* allow server to multithread
because web browsers send a lot of garbage requests we want the server
to multithread when serving 404s for favicon's etc. To avoid blowing up
llama we just take a mutex when it's invoked.
* let's try this with the xxd tool instead and see if msvc is happier with that
* enable server in Makefiles
* add /completion.js file to make it easy to use the server from js
* slightly nicer css
* rework state management into session, expose historyTemplate to settings
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server: add option to output probabilities for completion
* server: fix issue when handling probability output for incomplete tokens for multibyte character generation
* server: fix llama_sample_top_k order
* examples/common.h: put all bool variables in gpt_params together
* add interface for float input
* fixed inpL shape and type
* add examples of input floats
* add test example for embd input
* fixed sampling
* add free for context
* fixed add end condition for generating
* add examples for llava.py
* add READMD for llava.py
* add READMD for llava.py
* add example of PandaGPT
* refactor the interface and fixed the styles
* add cmake build for embd-input
* add cmake build for embd-input
* Add MiniGPT-4 example
* change the order of the args of llama_eval_internal
* fix ci error
* Clean up compiler warnings in train-text
Some brackets to disambiguate order of operations
* Increase GGML_MAX_NAME
Avoiding strncpy danger in train-text-from-scratch and reducing potential future name length issues
* detect NUMA systems and pin work threads to nodes (linux)
* disable mmap prefetch/readahead for NUMA systems
* avoid sending finalize op to thread pool if it does nothing
* silence robot
* fix args
* make --numa a param
* recommendation that n_nodes evenly divide n_threads did not warrant such aggressive enforcement
* lower synchronization overhead
* statically allocate
* move numa state to g_state
* add description for --numa
* ggml : minor style changes
* ggml : minor style + try fix sanitizer build
* llama : allow to initialize backend with NUMA support
* llama : avoid ggml include in llama-util.h
* ggml : style / formatting
* ggml : fix handling of ops with n_threads > n_tasks > 1
* server : utilize numa parameter
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : make model stateless and context stateful
* llama : minor cleanup
* llama : update internal API declaration
* Apply suggestions from code review
fix style
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Missing model memory release
* Fix style
* Add deprecated warning for public API function llama_init_from_file
* Update public API use cases: move away from deprecated llama_init_from_file
* Deprecate public API function llama_apply_lora_from_file
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
A major rewrite for the server example.
Note that if you have built something on the previous server API, it will probably be incompatible.
Check out the examples for how a typical chat app could work.
This took a lot of effort, there are 24 PR's closed in the submitter's repo alone, over 160 commits and a lot of comments and testing.
Summary of the changes:
- adds missing generation parameters: tfs_z, typical_p, repeat_last_n, repeat_penalty, presence_penalty, frequency_penalty, mirostat, penalize_nl, seed, ignore_eos
- applies missing top k sampler
- removes interactive mode/terminal-like behavior, removes exclude parameter
- moves threads and batch size to server command-line parameters
- adds LoRA loading and matches command line parameters with main example
- fixes stopping on EOS token and with the specified token amount with n_predict
- adds server timeouts, host, and port settings
- adds expanded generation complete response; adds generation settings, stop reason, prompt truncated, model used, and final text
- sets defaults for unspecified parameters between requests
- removes /next-token endpoint and as_loop parameter, adds stream parameter and server-sent events for streaming
- adds CORS headers to responses
- adds request logging, exception printing and optional verbose logging
- adds better stopping words handling when matching multiple tokens and while streaming, or when it finishes on a partial stop string
- adds printing an error when it can't bind to the host/port specified
- fixes multi-byte character handling and replaces invalid UTF-8 characters on responses
- prints timing and build info on startup
- adds logit bias to request parameters
- removes embedding mode
- updates documentation; adds streaming Node.js and Bash examples
- fixes code formatting
- sets server threads to 1 since the current global state doesn't work well with simultaneous requests
- adds truncation of the input prompt and better context reset
- removes token limit from the input prompt
- significantly simplified the logic and removed a lot of variables
---------
Co-authored-by: anon998 <131767832+anon998@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Felix Hellmann <privat@cirk2.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Lesaun Harvey <Lesaun@gmail.com>
Small, non-functional changes were made to non-compliant files.
These include breaking up long lines, whitespace sanitation and
unused import removal.
Maximum line length in python files was set to a generous 125 chars,
in order to minimize number of changes needed in scripts and general
annoyance. The "txt" prompts directory is excluded from the checks
as it may contain oddly formatted files and strings for a good reason.
Signed-off-by: Jiri Podivin <jpodivin@gmail.com>
* Update baby-llama.cpp
Seems to be an error in the implementation of the operator!= function. It attempts to compare the this pointer (a llama_hparams_lora object) with the other pointer (a llama_hparams object) using memcmp. This can lead to incorrect results because the sizes of the objects being compared (sizeof(llama_hparams) and sizeof(llama_hparams_lora)) are different, should now be able to compare two llama_hparams_lora objects for inequality.
* Update baby-llama.cpp
* Update baby-llama.cpp
* add python wrapper
https://gist.github.com/abetlen/2b90e5f153f6efd00931d098de5c73ce
* fix decoding error. adds errors=ignore parameter
* add python bindings for functions to get and set the whole llama state
(rng, logits, embedding and kv_cache)
* update python bindings
* add text generating baby-llama from scratch example
* fix race condition bug in ggml_compute_forward_diag_mask_f32
* implement ggml_soft_max_back for more performant backward pass of soft_max
avoids creating big intermediate matrices of size n_embd x n_embd for llama layers and n_vocab x n_vocab for cross entropy loss
* improve softmax backward pass
go from quadratic runtime to linear runtime by simplifying the formulas
* fix race condition bug in non-inplace ggml_compute_forward_diag_mask_f32
memcpy needs to be synchronized across threads to avoid race conditions.
=> do it in INIT phase
* fix bug in ggml_compute_forward_soft_max_back_f32 on DEBUG build
* improve performance of mul_mat backward pass
avoid transpose by using mul_mat with swapped arguments
* avoid printing too much newlines in baby-llama-text
* activate threading in baby-llama-text
* add ggml_out_prod and use it for mul_mat backward pass for improved performance
performance stats report improvement from 37 seconds to 16 seconds runtime during my training tests
* better weight initialization improves training convergence at start
* better weight initialization improves training convergence at start
* improve ggml_out_prod performance
- change iteration order (>15s -> 10s runtime)
- parallelize over one more dimension: over dst matrix rows (10s -> <5s runtime)
* add llama sampler, shuffle samples and constrain sampling to tokens occurring in train data
* fix get_samples call, add model tensor names, increase model size, start training samples after newline
* save train trained model to checkpoint and load model to be trained from checkpoint
* use inplace functions where possible
* initialize rng with srand
* use different arguments for input and output checkpoint
* ggml fixes to support backward pass on inplace operations
* remove duplicate include
* fix cross entropy loss
- add target probabilities for each sample which is then used in cross entropy loss
* print used memory before and after optimization
* sample with non-greedy sampling parameters at the end of training
* add cmake target for baby-llama-text
* add ggml_add1_inplace to header
* enable gradient propagation for inplace add1 and scale operations
those functions backward passes don't need the original src0, so they also work when forward is inplace
* implement AdamW in ggml_opt_adam by adding weight decay parameter (default 0.001f)
also add a schedule parameter (default 1.0f) that can be used to scale alpha and decay according to learning schedule.
setting the decay parameter to zero disables AdamW resulting in normal Adam optimizer.
since the difference between Adam and AdamW is minimal it is not implemented as another optimizer, but integrated into the existing Adam optimizer.
* use inplace operations in cross_entropy_loss
* fix random weight initialization scale
* add missing default parameters for adam optimizer
* add ggml_opt_context, so that we can properly resume training
otherwise the optimizer states, tracking statistics about the error function and its derivates,
will reset to zero each time ggml_opt is called, hindering convergence on resumed training.
now the optimizer context and all its memory is stored in a separate struct.
* fix bug in llama_sample_token_mirostat_v2
when all candidates are filtered out through mu threshold, the following soft_max operation will fail.
so keep at least one.
* add forward function without using cache, for more performant training
during training on whole samples no cache is required.
removing the cache and simplifying the remaining code results in performance and memory usage improvement.
* print suppressed newline tokens as string "\n"
printing too much actual newlines is suppressed to avoid flooding the console.
* store optimizer state in training checkpoint and add learning schedule
persistent optimizer state allows to resume training without resetting the optimizer
learning schedule consists of linear warmup ramp followed by cosine decay with restarts
* remove unused functions
* fix bug in get_samples which corrupted training targets
* save checkpoint only when it was trained
* simplify code
* remove trailing whitespace
* simplify backward pass for SQRT
* replace inefficient repeat backward pass with dedicated repeat_back operation
* add ggml_cross_entropy_loss with backward pass for faster training
cross entropy loss can also be implemented using softmax and log, but as dedicated operation it is faster and especially avoids unnecessary memory overhead.
* add tests for cross_entropy_loss backward pass
finite differences regularly results in estimated gradient of zero, despite the backward pass giving non zero gradient.
_probably_ the finite differences fails due to numerical issues
* use ggml_cross_entropy_loss in text training example
* remove trailing whitespace
* slightly improve how cross entropy loss is compute
btw: directly implemented cross entropy loss seems to have way lower magnitudes than when implemented with softmax and log.
probably the input to log gets closer to zero due to float numerics.
maybe the multiplication by (1.0-eps)/sum is more accurate..
* add llama_get_vocab to get the vocabulary as output parameters
* set default model.type for unknown models with few layers
* add export of training checkpoint to llama compatible model file
* get vocabulary for exporting training checkpoint to llama compatible model file
* implement backward pass of flash attention
* bugfixes for backward pass of flash attention
* test flash attention backward pass
need to set loose error bounds to pass.
the finitie differences are close to numeric limits and often return quite different values than the backward pass.
reducing eps further lets the gradients vanish completely.
likewise setting eps to big results in wronger values.
the softmax in the middle of the function is probably the most responsible for the numeric issues using finite differences.
* add option to train with flash attention and move options to the top of the main function
training from scratch also works with flash attention
training convergence and generation results after fix number of iterations are worse than when not using flash attention.
maybe there still lingers a bug in the flash attention backward pass?
but training works, just with slower convergence.
flash attention is still worth to use, because it requires way less memory and is faster with high n_ctx
* add train_params and command line option parser
* remove unnecessary comments
* add train params to specify memory size
* remove python bindings
* rename baby-llama-text to train-text-from-scratch
* replace auto parameters in lambda function
* add #include <climits>
* add explicit cast to fix compile error
"error: non-constant-expression cannot be narrowed from type 'int64_t' (aka 'long long') to 'uint32_t' (aka 'unsigned int') in initializer list [-Wc++11-narrowing]"
* remove trailing whitespace
* add ggml_opt_resume_g which accepts forward and backward cgraphs
* fix formulas in comments
* bug fix for ggml_compute_forward_get_rows_back_f32
the result should be set to zero, not to whatever data is in opt0
* improve training memory usage with scratch buffers
instead of relying on the automatic backward pass, we manually create the graph for the backward pass.
it turns out that all backward pass operations need only temporary memory which can be reused after each layer.
will compute backward pass for ALL model parameters
* add option to use scratch buffers in training or not
make it configurable because currently training with scratch buffers implies flash attention and optimization over all parameters.
* ci : disable temporary
* store view offset and permute axes in opt[0] instead of storing it in padding
use memcpy to store offset, because offset is of type size_t.
when storing it as int32_t offset would have to be smaller than 2^31 which is not necessarily true.
* minor : fix compile warnings + minor style changes
* fix bug in threaded indices calculation of ggml_compute_forward_flash_attn_back_f32
* store view offset like in master branch
* bug fix in forward_batch_wo_cache_flash_attn_train
* scratch buffer bug fixes in forward_batch_wo_cache_flash_attn_train
data of permute and reshape is the same as their input.
if we want to preserve the output of permute/reshape, we also need to preserve their inputs.
replace reshape(src0, src1) with reshape_nd calls so that we don't need src1.
replace (temporary) t03 with ggml_repeat(ctx0, layer.attention_norm, t02).
in the future we could also use the new broadcasting ggml_mul to avoid these repeat calls.
for this we need backward pass of broadcasting ggml_mul.
* remove unnecessary scratch buffer 0
buf 0 is persistent memory, so we can just disable scratch for this by using buf -1
* avoid creating unnecessary grad tensors
previously we need to create grads for model parameters, so that expand(..) correctly populates cgraph->leafs & cgraph->grads
this wasted memory, because unnecessary grad for each op were automatically created:
the automatically generated grad was unnecessary because we later manually set the grad (e.g. t35->grad = expand(gb, ...) ).
this discarded the automatically generated grad resulting in wasted memory.
improved this by changing expand(..) to not use ggml_build_forward_expand.
expand set cgraph->nodes but not the leafs.
cgraph->leafs & cgraph->grads are set in another pass after the last expand call.
* print used training seed
* zero initialize gfbuf and gbbuf
* ci : re-enable workflows + add README for training
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Allow "quantizing" to f16 and f32
Fix an issue where quantizing didn't respect LLAMA_NO_K_QUANTS
Add brief help to the list of quantization types in the quantize tool
Ignore case for quantization type arguments in the quantize tool
* Fix issue where interactive mode in the main example crashes when input exceeds ctx size
* Ensure the context size is at least 8 tokens in the main example.
Closes#1768
* Add support for quantizing already quantized models
* Threaded dequantizing and f16 to f32 conversion
* Clean up thread blocks with spares calculation a bit
* Use std::runtime_error exceptions.
The prompt cache constitutes a nice speed up when using the same prompt
prefix across multiple evaluations, but when using it, it will also be
updated, which is not always desirable. One use case is to have a large
prompt containing some context and usage rules, and a second part
containing variable data of the problem being studied. In this case it's
desirable to be able to save the first part once, and to always reuse it
as-is without updating it with the second part.
The new argument --prompt-cache-ro enables this read-only mode on the
prompt cache. The prompt's contents that match the cache are loaded
from the cache but the rest is not modified. This allowed to reduce a
total analysis time from 112s to 49.7s here, without having to backup
and restore a copy of the prompt, which takes significant time at 500
MB.
Signed-off-by: Willy Tarreau <w@1wt.eu>
* Starting to add k-quantization to ggml
I think it is better to have quantization separate from
ggml. For now just adding the k-quants there, but it would be
better to also factor out the existing ggml quantizations.
* Adding Q3_K and Q8_K (de)-quantization
* Q3_K now working on CUDA and AVX2/scalar
CUDA is not ideal - ~50% slower than Q4_0 for
single token prediction, about the same in batch
mode (perplexity). CPU single token is ~55 ms
(on Ryzen 7950X).
* Some improvement for Q3_K on CUDA
It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0.
* Some more CUDA optimizations for Q3_K
Single token is now 20.5 ms/token (~20% slower than Q4_0).
Perplexity is on par with Q4_0.
* Adding Q4_K - scalar, AVX2, CUDA
Performance is the same or perhaps very slightly better than Q4_0 on the CPU.
On the GPU, single token prediction is ~10% better than Q4_0,
batch mode (perplexity is about the same).
* Adding Q6_K - scalar, AVX2, CUDA
Performance is ~40% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 6-bit model is ~44% larger than the 4-bit.
On the GPU, single token prediction is ~6% lower than Q4_0,
batch mode (perplexity) is even closer (but still slower).
* Adding Q5_K - scalar, AVX2, CUDA
Performance is ~20% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 5-bit model is ~22% larger than the 4-bit.
On the GPU, single token prediction is about the same as Q4_0
for both, single token and batch prediction.
* Per convention, all QX_K quantizations use Q5_K for output.weight
* Adding quantization mixes
* Quantization mixes: didn't quite get what I wanted in the last commit
* Q4_K dot product for ARM_NEON
* Q6_K dot product for ARM_NEON
* Q5_K dot product for ARM_NEON
* Adding Q3_K dot for ARM_NEON
It is 22% slower than Q4_K, despite the smaller model size.
On x86_64, where we are memory bound, the Q3_K model is
quite a bit faster than Q4_K.
* A very slightly faster ARM_NEON Q3_K dot
* Adding Q2_K - just CUDA for now
Token prediction is pretty good - about 15.5 ms on a RTX 4080.
Perplexity is about the same as Q4_K.
* Adding scalar and AVX2 Q2_K dot
* Adding ARM_NEON Q2_K dot
About the same performance as Q4_K.
* A slightly faster ARM_NEON Q2_K dot
Single token prediction is now ~36 ms on M2 Max.
The code is much simpler too.
* Fixed bug in Q2_K CUDA dot product kernel
Stranegly enough, for the few prompts I tried with the 7B model
the responses looked perfectly reasonable. Only realized something
is not quite right when I tried the larger models and started getting
nonse back.
In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X
box iusing CUDA and model fully loaded on the GPU are
~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B.
The max number of layers that fit in VRAM for The 65B is 32.
With that, we get ~330 ms per token, which is not that much faster
than just running on the CPU (~470 ms per token).
* Don't print zeros/NaNs when no count histogram has been collected
* A 10% faster CUDA vector dot kernel for Q3_K
Q3_K is now running at ~18.5 ms / token on CUDA,
so the gap to Q4_0 is only 10%.
It seems memory acccess pattern is more important for
performance than the amount of computation the kernel
does.
* A slightly daster Q4_K AVX2 dot product
For perplexity, where we are less memory bound, time per
pass drops by ~5%. Barely measurable difference for single
token prediction.
* A slightly faster ARM_NEON A4_K dot product
* Minor
* Fix quantization error test
We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit
quantization variants.
* Fix docker build
I have been sloppy with vector reinterpret casts on ARM_NEON.
It seems clang is very forgiving in that regard.
* Added forgotten ggml.o dependence on k_quants.h to the Makefile
* Had unintentionally committed the Makefile with -Ofast enabled
* ggml : rename k_quants -> ggml-quants-k, use lowercase in code
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* mtl : export the LLaMA computation graph
* ci : disable temporary
* mtl : adapt the MNIST example as starter
* mtl : no need for mtl-export tool, add cli arg for main instead
* mtl : export just a small part of the graph for now to make it easier
* mtl : move MSL code into separate file for easy editing
* mtl : initial get_rows_q4_0 kernel
* mtl : confirmed get_rows_q4_0 is working correctly
* mtl : add rms_norm kernel + confirm working
* mtl : add mul kernel + confirm working
* mtl : initial mul_mat Q4 kernel (wrong results)
* mtl : mul_mat fixes (still wrong)
* mtl : another mul_mat Q4 (still does not work)
* mtl : working mul_mat q4
* ggml : fix handling of "view" ops in ggml_graph_import()
* mtl : add rope kernel
* mtl : add reshape and transpose handling
* ggml : store offset as opt arg for ggml_view_xd() operators
* mtl : add cpy kernel + handle view ops
* mtl : confirm f16 x f32 attention mul mat
* mtl : add scale kernel
* mtl : add diag_mask_inf kernel
* mtl : fix soft_max kernel
* ggml : update ggml_nbytes() to handle non-contiguous tensors
* mtl : verify V tensor contents
* mtl : add f32 -> f32 cpy kernel
* mtl : add silu kernel
* mtl : add non-broadcast mul kernel
* mtl : full GPU inference of the computation graph
* mtl : optimize rms_norm and soft_max kernels
* mtl : add f16 mat x f32 vec multiplication kernel
* mtl : fix bug in f16 x f32 mul mat + speed-up computation
* mtl : faster mul_mat_q4_0_f32 kernel
* mtl : fix kernel signature + roll inner loop
* mtl : more threads for rms_norm + better timing
* mtl : remove printfs from inner loop
* mtl : simplify implementation
* mtl : add save/load vocab to ggml file
* mtl : plug Metal inference into llama.cpp (very quick-n-dirty)
* mtl : make it work with main example
Lots of hacks but at least now it generates text
* mtl : preparing for merge
* mtl : clean-up ggml mtl interface + suport scratch / inplace
* mtl : remove temp / debug code
* metal : final refactoring and simplification
* Revert "ci : disable temporary"
This reverts commit 98c267fc77.
* metal : add comments
* metal : clean-up stuff, fix typos
* readme : add Metal instructions
* readme : add example for main
1. Add a `LLAMA_SUPPORTS_GPU_OFFLOAD` define to `llama.h` (defined when compiled with CLBlast or cuBLAS)
2. Update the argument handling in the common example code to only show the `-ngl`, `--n-gpu-layers` option when GPU offload is possible.
3. Add an entry for the `-ngl`, `--n-gpu-layers` option to the `main` and `server` examples documentation
4. Update `main` and `server` examples documentation to use the new style dash separator argument format
5. Update the `server` example to use dash separators for its arguments and adds `-ngl` to `--help` (only shown when compiled with appropriate support). It will still support `--memory_f32` and `--ctx_size` for compatibility.
6. Add a warning discouraging use of `--memory-f32` for the `main` and `server` examples `--help` text as well as documentation. Rationale: https://github.com/ggerganov/llama.cpp/discussions/1593#discussioncomment-6004356
Set `LLAMA_BUILD_SERVER` in workflow so the `server` example gets build. This currently only applies to Windows builds because it seems like only Windows binary artifacts are included in releases.
Add `server` example target to `Makefile` (still uses `LLAMA_BUILD_SERVER` define and does not build by default)
Fix issue where `vdot` binary wasn't removed when running `make clean`.
Fix compile warnings in `server` example.
Add `.hpp` files to trigger workflow (the server example has one).
Improvements to loading the session with `--prompt-cache` in the `main` example.
1. Fix an issue where the `--seed` parameter was ignored when loading a cached prompt.
2. When loading a cached prompt, you previously had to specify the saved prompt (or a prefix of it) again. This pull changes that behavior to default to the prompt that was cached if a prompt wasn't specified by the user.
* Added httplib support
* Added readme for server example
* fixed some bugs
* Fix the build error on Macbook
* changed json11 to nlohmann-json
* removed some whitespaces
* remove trailing whitespace
* added support custom prompts and more functions
* some corrections and added as cmake option
* Make reverse prompt option act as a stop token in non-interactive scenarios
* Making requested review changes
* Update gpt_params_parse and fix a merge error
* Revert "Update gpt_params_parse and fix a merge error"
This reverts commit 2bb2ff1748.
* Update gpt_params_parse and fix a merge error take 2
* fix get_num_physical_cores()
had been broken on complex topologies because "cpu cores" in /proc/cpuinfo is per-"physical id"
* Add spaces to maintain consistent formatting
---------
Co-authored-by: slaren <ddevesa@gmail.com>
* implement 8 of 14 missing backward pass operations used by llama
- GGML_OP_ADD_AT
- GGML_OP_CPY
- GGML_OP_MUL_MAT (src0.grad)
- GGML_OP_PERMUTE
- GGML_OP_RESHAPE
- GGML_OP_SCALE
- GGML_OP_TRANSPOSE
- GGML_OP_VIEW
implement additional ggml operation GGML_OP_ADD_AT, which is necessary for backward pass of GGML_OP_VIEW.
this operation adds src1 to src0 with data offset, i.e. to view(src0, ..., offset).
the values are return in a tensor size of src0. values outside of [data+offset:data+offset+nbytes(src1)] are just the original values from src0.
still missing backward passes for llama:
- GGML_OP_DIAG_MASK_INF
- GGML_OP_GET_ROWS
- GGML_OP_RMS_NORM
- GGML_OP_ROPE
- GGML_OP_SILU
- GGML_OP_SOFT_MAX
* implement 5 of 6 missing backward pass operations used by llama
- GGML_OP_DIAG_MASK_INF
- GGML_OP_GET_ROWS
- GGML_OP_RMS_NORM
- GGML_OP_SILU
- GGML_OP_SOFT_MAX
add necessary ggml operations GGML_OP_ADD1, GGML_OP_SILU_BACK, GGML_OP_RMS_NORM_BACK, GGML_OP_DIAG_MASK_ZERO, and GGML_OP_ROPE_BACK
GGML_OP_ADD1 is necessary to add a scalar value in the backward pass of GGML_OP_SOFT_MAX
GGML_OP_ADD1 could also be replaced by using GGML_OP_ADD and GGML_OP_REPEAT, but the performance would be worse. additionally GGML_OP_REPEAT will return unexpected value when the the input to GGML_OP_SOFT_MAX contains only a single scalar. in this case GGML_OP_REPEAT will not return the value that should be repeated (src1) but the value which shape the result should take (src0). So in this case it can not replace GGML_OP_ADD1.
GGML_OP_SILU_BACK, GGML_OP_RMS_NORM_BACK and GGML_OP_ROPE_BACK are necessary for backward pass of GGML_OP_SILU, GGML_OP_RMS_NORM and GGML_OP_ROPE. The backward pass for these functions cannot be easily composed of existing operations. Since the backward pass builds a computation graph we need operations forward pass implementations of the the required backward passes. Sounds a bit confusing at first, I know...
GGML_OP_DIAG_MASK_ZERO is necessary for backward pass of GGML_OP_DIAG_MASK_INF.
Some operations where previously inplace-only. for backward pass there needs to be non-inplace variants.
staying consistent with other operations that have non-inplace and inplace variants, the operations are changed to non-inplace and
functions with "_inplace" are added which are inplace.
in llama we need to call the inplace variants so that it is implemented as before.
for llama backward pass we need to use the non-inplace variants.
still not completely implemented backward passes for llama:
- GGML_OP_ROPE: needs forward pass for GGML_OP_ROPE_BACK
- GGML_OP_GET_ROWS: only necessary for tokenizer
* norm & rms_norm can not be threaded:
after investigation rms norm for quite some time I come to the conclusion that neither norm, nor rms_norm can be threaded, because we need mean over all items, not just of the slices each thread sees.
* remove already resolved TODO
* implement backward pass of ggml_rope and ggml_rope_back
* implement backward pass for ggml_get_rows and for new operation ggml_get_rows_back
* add test-grad0.c
* use GGML_PRINT_DEBUG for debug messages which will otherwise flood the console
* test both gradients of mul_mat
* disable graph dot export as it floods console
* bug fixes for silu_back
* successfully test silu backward
* bug fix for scale backward pass
use sum instead of mean for gradient of scalar scale parameter
* successfully test scale backward
* improve performance of sum backward pass
use add1(x,y) instead of add(x,repeat(y,x))
* improve performance of sqr backward pass
use scale(x,y) instead of mul(x,repeat(y,x))
* successfully test rope backward
* bug fix for cpy backward pass
* successfully test cpy backward
* bug fix for reshape backward pass
* successfully test reshape backward
* add test-opt.c
this uses ggml_opt to train a,b for minimal e=sum(sqr(c - a*b)) for random initial a,b,c
* correctly implement softmax backward pass using new operation ggml_diag
ggml_diag constructs diagonal matrices with entries.
ggml_diag(shape[a,1,c,d]) -> shape[a,a,c,d]
* successfully test soft_max backward
* align shape annotations
* add shape annotations for llama
* de-duplicate ggml_forward_dup code taking care of contiguous tensors of same type.
with this we can duplicate tensor of any typ as long as they are contiguous.
* fix ggml_compute_forward_dup_same_cont for when nelements < nthreads
when more threads are used than elements exist ie1 was less than ie0, resulting in invalid negative byte count argument in memcpy
* bug fix for add_at forward
required for view backward pass
src0 values must be copied to dst, because during addition we don't touch all dst elements in contrast to the normal add function.
* successfully test view backward
* minor code format improvement
* fix ggml_forward_add functions to work correctly with transposed tensors
uses the same logic as in ggml_compute_forward_add_q_f32, but make it consistent across all ggml_compute_forward_add_... functions.
this also slightly changes the mem access pattern of the different threads to works as in ggml_compute_forward_add_q_f32.
* fix ggml_forward_add1 functions to work correctly with transposed tensors
uses the same logic as in ggml_compute_forward_add1_q_f32, but make it consistent across all ggml_compute_forward_add1_... functions.
this also slightly changes the mem access pattern of the different threads to works as in ggml_compute_forward_add1_q_f32.
* test-grad0.c : add print_elements to help with debugging
* successfully test permute backward
* some minor test-grad0 fixes
* fix sub, mul and div functions to work correctly with transposed tensors
uses the same logic as in add
* implement ggml_cont backward pass
* successfully test transpose backward and permute for all permutations
also test sub, mul and div up to max n_dims
* test-grad0.c add TODO for view_2d and view_3d
add_at (required for view backward pass) is a bit tricky for n_dims > 1.
* fix comments
* successfully test diag_mask_inf and diag_mask_zero backward
* test-grad0 : fix test for div
nargs and ndims was swapped, corrupting the stack
* fix diag_mask to work with non-inplace input
* move dup call into the actual add_at functions
* fix get rows backward pass
* successfully test get_rows backward
* fix view backward pass
add nb parameters to add_at like in view.
together with offset they define how to view dst and src0 during the add_at operation.
* successfully test backward pass of view_1d, view_2d and view_3d
* fix backward pass for rms_norm
I would have used formulas from other frameworks, but they differed so I could not decide which is correct.
Instead it was derived here in comment using manual forward-backward automatic differention of rms_norm and simplification.
* successfully test backward pass of rms_norm
some tests may fail when gradients are large.
could not find a satisfying configuration to check for abs error and relative error that passes all tests while still actually testing the results with tight enough error bounds.
when looking at the values the "failed" tests look actually ok. for example:
rms_norm: ndims=2, i=0, k=2, x0=0.000153, xm=0.000053, xp=0.000253, f0=0.278594, f1=0.086213, g0=961.905457, g1=966.064941, eps=0.000100, error_abs=4.159485, error_rel=0.004324
it is due to the test logic in check_gradients that they fail.
* add todos for llama backward pass
- implementation for ADD1 backward pass should probably use sum instead of mean (but this backward pass is not required)
- repeat is not yet tested and looks like it only works for single element src0 inputs.
* add operation ggml_sum_rows
ggml_sum_rows(shape[a,b,c,d]) -> shape[1,b,c,d]
* add missing GGML_OP_SUM_ROWS
* fix backward pass for repeat
requires ggml_sum_rows
* successfully test backward pass of repeat
* update quantization types in switch-case of add_at and add1
* add baby-llama example training a very small llama model from scratch to output a sinusoidal wave.
had to increase maximum number of optimization parameters to train from scratch.
* fix softmax in baby-llama example
* switching from training with adam to lbfgs produces much better results in the baby-llama example
* train with two examples, creating new tensors each time..
* fix bug when using ggml_opt to optimize params in one context and use a renewable context for eval and opt
when not keeping gradients of model parameters they are overwritten by tensors created by opt, which may be invalid after opt context is renewed.
so we need to keep the original gradients and make dups for opt
* train on multiple examples, generate & print tokens with trained model afterwards
ctx0 for evaluation and optimization is renewed for each sample
* add ggml_reshape_1d, ggml_reshape_4d and ggml_view_4d
* fix soft_max backward pass for input->ne[1] != 1
* add ggml_log operation necessary for cross entropy loss
* add test for ggml_log gradients
* implement backward pass for ggml_sum_rows, necessary for cross entropy loss
* implement ggml_repeat support for rank > 2 tensors
* add test for ggml_sum_rows gradients
* fix training get_example_targets
predict the next token, not the current token!
* add square_error_loss and cross_entropy_loss functions
* optimize loss over multiple samples
this increases computation graph, need parallel batched forward for more efficiency.
* fix backward pass for add_at and change arguments to have same order as in view
* add ggml_set(ctx, a, b) to set b in view of a and return modified a
necessary to set values into kv_self cache and properly propagate the gradients
* fix kv_self gradients for training
use ggml_set instead of ggml_cpy to set kv_self cache with properly propagating gradients
* replace inplace operations for training with copying operations to allow gradient propagation
* add GGML_ASSERT to catch ggml_rope and back value errors
* add trainable lora-only model with all big matrices C split into A,B with A*B=C
this is not a lora-finetune, but the whole model changed to have only low-rank "lora" matrices.
training this instead of the normal model resulted in much worse results though...
* vastly improve training results
instead of logit targets 0 and 1 use -1 and +1.
* shorten code using a variable
* change name of GGML_OP_ADD_AT to GGML_OP_ACC
* smaller default values for baby llama model parameters
* update static assert of GGML_OP_COUNT
* remove shape annotations in llama_eval_internal
* revert disabling of threading for rms_norm and norm
* rename print functions in baby-llama example
* fix call to ggml_set_name
* add missing include for strcmp, etc
* remove trailing whitespace
* reduce number of test-grad0 iterations
avoid exceeding timeout of automated tests
* remove busy loop that was used as sleep for slower sinus wave generation
* disable slow tests grad0 and opt to avoid exceeding timeouts
* c++ in baby-llama example
use c++ includes instead of c includes
use std::min, std::max instead of MIN, MAX macros
* c++ in baby-llama example
use c++ includes instead of c includes
use std::min, std::max instead of MIN, MAX macros
* ggml : fix compiler warnings + cosmetic changes
* ggml : fix nullptr derefs in GGML_OP_CONT and GGML_OP_RESHAPE back
* swap arguments to vDSP_vdiv call
documentation for vDSP_vdiv states: "Note that B comes before A!"
* swap arguments to vDSP_vdiv call
documentation for vDSP_vdiv states: "Note that B comes before A!"
* ggml : swap vDSP_vsub args as per documentation
* add parallel batched forward function for baby-llama training
* cleanup code for batched training
* remove trailing whitespace
* minor : fix compiler warnings + indentation style
* ggml : fix null ptr deref in backward pass
* ggml : remove Q4_2 remnants
* ggml : fix clang-tidy warnings
* baby-llama : couple of clang-tidy warnings
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* main : add option to save full output to session
* split behavior into --session and --prompt-cache
* restore original implementation with new names
* PR comments
* move the check for incompatible parameters to gpt_params_parse
* Fix whitespace
Co-authored-by: DannyDaemonic <DannyDaemonic@gmail.com>
---------
Co-authored-by: DannyDaemonic <DannyDaemonic@gmail.com>
* fix reverse prompt and multi line
* Code Formatting
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Add git-based build information for better issue tracking
* macOS fix
* "build (hash)" and "CMAKE_SOURCE_DIR" changes
* Redo "CMAKE_CURRENT_SOURCE_DIR" and clearer build messages
* Fix conditional dependency on missing target
* Broke out build-info.cmake, added find_package fallback, and added build into to all examples, added dependencies to Makefile
* 4 space indenting for cmake, attempt to clean up my mess in Makefile
* Short hash, less fancy Makefile, and don't modify build-info.h if it wouldn't change it
* Sample interface, new samplers.
New samplers:
- locally typical sampling
- tail free sampling
- frequency and presence penalty
- mirostat
Ignore EOS fix: -inf should be used.
* mirostat
* Added --logit-bias and --no-penalize-nl, removed std::span
* Use C++11, clarify llama API documentation, rename Mirostat parameters to --mirostat_lr and --mirostat_ent, add temperature sampling for Mirostat, simplify Mirostat sampling API parameters (removed N and *k)
Use C++11, clarify llama API documentation, rename Mirostat parameters to --mirostat_lr and --mirostat_ent, add temperature sampling for Mirostat, simplify Mirostat sampling API parameters (removed N and *k)
* Save and load example adjust
* Tests
* Windows build fix
* Windows test fix
* Basic Setup
* Prevent Results.txt from coming up
* Prefixes, Line separators, etc
* editorcheck
* introduction to give more consistent results
* Basic graph thing
* Grading, ready for testing!
* Y'all ready to get funky?
* fix column removal stuff
* missed a few
instead of `int` (while `int` option still being supported)
This allows the following usage:
`./quantize ggml-model-f16.bin ggml-model-q4_0.bin q4_0`
instead of:
`./quantize ggml-model-f16.bin ggml-model-q4_0.bin 2`
* add save_load_state example
* use <cstdio> instead of <iostream> and fprintf / printf instead of cout
* renamed save-load-state example files replacing underscores by dashes
* set default n_batch to 512 when using BLAS
* spacing
* alternate implementation of setting different n_batch for BLAS
* set n_batch to 512 for all cases
* Moving parameters to separate lines for readability.
* Increasing repeate_penalty to 1.1 to make alpaca more usable by default.
* Adding trailing newline.
* Multi-threading quantization.
Not much gain for simple quantizations, bit it will be important
for quantizations that require more CPU cycles.
* Multi-threading for quantize-stats
It now does the job in ~14 seconds on my Mac for
Q4_0, Q4_1 and Q4_2. Single-threaded it was taking
more than 2 minutes after adding the more elaborate
version of Q4_2.
* Reviewer comments
* Avoiding compiler confusion
After changing chunk_size to const int as suggested by
@ggerganov, clang and GCC starting to warn me that I don't
need to capture it in the lambda. So, I removed it from the
capture list. But that makes the MSVC build fail. So,
making it a constexpr to make every compiler happy.
* Still fighting with lambda captures in MSVC
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Add support to batch size for perplexity
* Revert "Fix memory allocation issues and seg faults"
This reverts commit 4870e455b3.
* update from merge
* Remove perplexity from main
* updates
* Update batch size for efficiency
* Initial version of q4_0 matrix multiplication benchmark
* Bugfix: Added dependency to ggml.o to benchmark
* Reviewer requests: added parameter for threads, switched to ggml_time_us()
* Reviewer input: removed rtsc, use epsilon for check
* Review comment: Removed set_locale
* Feature: Param for numer of iterations, Bugfix for use of parameter threads
* Reviewer suggestion: Moved to examples
* Reviewer feedback: Updated clean: and benchmark: sections
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Mostly for msys2 and mingw64 builds, which are different from each other
and different from standard Visual Studio builds. Isn't Windows fun?
- Define _GNU_SOURCE in more files (it's already used in ggml.c for
Linux's sake).
- Don't use PrefetchVirtualMemory if not building for Windows 8 or later
(mingw64 doesn't by default). But warn the user about this situation
since it's probably not intended.
- Check for NOMINMAX already being defined, which it is on mingw64.
- Actually use the `increment` variable (bug in my `pizza` PR).
- Suppress unused variable warnings in the fake pthread_create and
pthread_join implementations for Windows.
- (not Windows-related) Remove mention of `asprintf` from comment;
`asprintf` is no longer used.
Fixes#871.
- Support all three formats (ggml, ggmf, ggjt). (However, I didn't
include the hack needed to support GPT4All files without conversion.
Those can still be used after converting them with convert.py from my
other PR.)
- Support both mmap and read (mmap is used by default, but can be
disabled with `--no-mmap`, and is automatically disabled for pre-ggjt
files or on platforms where mmap is not supported).
- Support multi-file models like before, but automatically determine the
number of parts rather than requiring `--n_parts`.
- Improve validation and error checking.
- Stop using the per-file type field (f16) entirely in favor of just
relying on the per-tensor type/size fields. This has no immediate
benefit, but makes it easier to experiment with different formats, and
should make it easier to support the new GPTQ-for-LLaMa models in the
future (I have some work in progress on that front).
- Support VirtualLock on Windows (using the same `--mlock` option as on
Unix).
- Indicate loading progress when using mmap + mlock. (Which led me
to the interesting observation that on my Linux machine, with a
warm file cache, mlock actually takes some time, whereas mmap
without mlock starts almost instantly...)
- To help implement this, move mlock support from ggml to the
loading code.
- madvise/PrefetchVirtualMemory support (based on #740)
- Switch from ifstream to the `fopen` family of functions to avoid
unnecessary copying and, when mmap is enabled, allow reusing the same
file descriptor for both metadata reads and mmap (whereas the existing
implementation opens the file a second time to mmap).
- Quantization now produces a single-file output even with multi-file
inputs (not really a feature as much as 'it was easier this way').
Implementation notes:
I tried to factor the code into more discrete pieces than before.
Regarding code style: I tried to follow the code style, but I'm naughty
and used a few advanced C++ features repeatedly:
- Destructors to make it easier to ensure everything gets cleaned up.
- Exceptions. I don't even usually use exceptions when writing C++, and
I can remove them if desired... but here they make the loading code
much more succinct while still properly handling a variety of errors,
ranging from API calls failing to integer overflow and allocation
failure. The exceptions are converted to error codes at the
API boundary.)
Co-authored-by: Pavol Rusnak <pavol@rusnak.io> (for the bit I copied from #740)
Command that calculates some statistics over the errors introduced by
quantization, like mean square error, max error and some percentile errors for layer
weights. Should be useful for testing quantization improvements.
Exposes some internal state from ggml and llama for testing
* Add Miku.sh to examples
* Add missing line to prompt in Miku.sh
* Add --keep param to Miku.sh
* Remove '[end_of_conversation]' line from Miku.sh
No longer is necessary.
* Create chat-13B.bat
Same script than chat-13B.sh, but for windows users.
Tested and working on windows 10/11 v 22H2
* Apply suggestions from code review
---------
Co-authored-by: anzz1 <anzz1@live.com>